Hierarchical Image Gathering Technique for Browsing Surveillance Camera Images

  • Wataru Akutsu
  • Tadasuke Furuya
  • Hiroko Nakamura Miyamura
  • Takafumi Saito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4557)


We propose an image gathering and display method for efficient browsing of surveillance camera images. The proposed method requires large cost to inspect lengthy image sequences taken by a surveillance camera. The proposed method involves generating a still image by gathering the moving parts from image sequences captured by a fixed camera. The gathered images are generated for several intervals of time and are displayed hierarchically. A user can easily browse the scene by observing the images with moving parts. Since detection and recognition of the target objects are performed by a human operator, efficient and reliable browsing can be established.


gathered images temp oral resolutions hierarchical display 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S.: Improving Shadow Suppression in Moving Object Detection with HSV Color Information. In: IEEE Intelligent Transportation Systems Conference Proceedings, pp. 334–339 (2001)Google Scholar
  2. 2.
    Haritaoglu, I., Harwood, D., Davis, L.: W4: Real-Time Surveillance of People and TheirActivities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 809–830 (2000)CrossRefGoogle Scholar
  3. 3.
    Jacinto, C., Jorge, M.: Performance Evaluation of Object Detection Algorithms for Video Survillance. IEEE Transaction on Multimedia 8(4), 761–774 (2006)CrossRefGoogle Scholar
  4. 4.
    Gian, F., Lucio, M., Carlo, R.: Automatic Detection and Indexing of Video-Event Shots for Surveillance Application. IEEE Transction on Multimedia 4(4), 459–471 (2002)CrossRefGoogle Scholar
  5. 5.
    Hu, W., Tan, T., Wang, L., Maybankl, S.: A Survey on Visual Surveillance of Object Motion and Behaviors. IEEE Transaction on CyberneticsPart C: Application and Reviews, vol. 34(3) (2004)Google Scholar
  6. 6.
    Hayashi, K., Haga, T., Seki, M., Sasakawa, K.: Detecting Human Position and Action in Surveillance Scenes. IPSJ CVIM14, 47(9), 12–20 (2006)Google Scholar
  7. 7.
    Kass, M., Witkim, A., Terzopoulos, D.: Snakes, Active Contour Models. Int. J. Computer Vision 1.1(4), 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Sethian, J.: Level set Methods, 1st edn. Cambridge University Press, Level set Methods (1996)zbMATHGoogle Scholar
  9. 9.
    Osher, S., Sethian, J.A.: Fronts Propagating with Curvature Dependent Speed, Algorithm based on Hamilton-Javobi formation. J. Computational Physics 79, 12–49 (1998)CrossRefGoogle Scholar
  10. 10.
    Finkelstein, A., Jacobs, C.E., Salesin, D.H.: Multiresolution Video. In: Proceedings of SIGGRAPH 1996, pp. 281–290 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Wataru Akutsu
    • 1
  • Tadasuke Furuya
    • 1
  • Hiroko Nakamura Miyamura
    • 1
  • Takafumi Saito
    • 1
  1. 1.Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology 

Personalised recommendations