Intuitive Human-Machine-Interaction and Implementation on a Household Robot Companion

  • Christopher Parlitz
  • Winfried Baum
  • Ulrich Reiser
  • Martin Hägele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4557)


The increasing capabilities of experimental household robot platforms require more and more sophisticated methods of interaction. While there are many developments in all directions of Human-Machine-Interaction, the integration and combination of several modalities into one robot system require some effort. To ease the development of applications supporting several types of interaction, Fraunhofer IPA has developed a framework named “Go”. Within this framework we have integrated different kinds of interaction methods into one robot platform “Care-O-bot 3”, a mobile service robot for accomplishing daily tasks. This framework and its interaction methods are presented here.


Remote Control Gesture Recognition Robot System Range Image Service Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (Retrieved November 2006)
  2. 2.
  3. 3. (Retrieved November 2006)
  4. 4. (Retrieved November 2006)
  5. 5. (Retrieved November 2006)
  6. 6.
    Delhees, K.: Soziale Kommunikation. Psychologische Grundlage für das Miteinander in der modernen Gesellschaft. Westdeutscher Verlag (1994)Google Scholar
  7. 7. (Retrieved November 2006)
  8. 8.
    Handel, S.: Listening: An Introduction to the Perception of Auditory Events. MIT Press, Cambridge (1989)Google Scholar
  9. 9.
    Rodeman, T., et al.: Real-time Sound Localization With a Binaural Head-system Using a Biologically-inspired Cue-triple Mapping. In: Proceedings of the 2006 IROS, Beijing, China (2006)Google Scholar
  10. 10.
    Tamai, Y., Sasaki, Y., Kagami, S., Mizoguchi, H.: Three ring microphone array for 3D sound localization and separation for mobile robot audition. In: Intelligent Robots and Systems (2005)Google Scholar
  11. 11.
  12. 12. (Retrieved November 2006)
  13. 13.
    Möbius, B.: Corpus-based speech synthesis: methods and challenges. In: Arbeitspapier des Instituts für Maschinelle Sprachverarbeitung (Univ. Stuttgart) AIMS (2000)Google Scholar
  14. 14.
    Kubacki, J., Reiser, U.: Mirrobot: Fast Detection of Body-Parts in the Scale-Space of Range Images with an Application to Human Motion Copying, RO-MAN, University of Hertfordshire, Hatfield, United Kingdom, pp. 552–557 (2006)Google Scholar
  15. 15.
    Oggier, T., Büttgen, B., Lustenberger, F.: SwissRanger SR3000 and first experiences based on miniaturised 3D-TOF cameras. In: Proc. Of the First Range Imaging Research Day, pp. 97–108 (2005)Google Scholar
  16. 16.
    Lindeberg, T.: Scale–space: A framework for handling image structures at multiple scales. Technical Report CVAP-TN15, Royal Instute of Technology (1996)Google Scholar
  17. 17.
    Bretzner, L., Laptev, I., Lindeberg, T.: Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Face and Gesture, Washington, DC, pp. 423–428 (2002)Google Scholar
  18. 18.
    Knoop, S., Vacek, S., Dillmann, R.: Modeling joint constraints for an articulated 3D human body model with artificial correspondences in ICP. In: International Conference on Humanoid Robots (Humanoids 2005); Tsukuba, Japan (2005)Google Scholar
  19. 19.
    Rosson, M., Carroll, J.: Usability Engineering. Academic Press, San Diego, CA (2002)Google Scholar
  20. 20. (Retrieved November 2006)

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christopher Parlitz
    • 1
  • Winfried Baum
    • 1
  • Ulrich Reiser
    • 1
  • Martin Hägele
    • 1
  1. 1.Fraunhofer IPA, Nobelstr. 12, D-70569 StuttgartGermany

Personalised recommendations