Neural Networks for Inflow Forecasting Using Precipitation Information

  • Karla Figueiredo
  • Carlos R. Hall Barbosa
  • André V. A. Da Cruz
  • Marley Vellasco
  • Marco Aurélio C. Pacheco
  • Roxana J. Conteras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4570)

Abstract

This work presents forecast models for the natural inflow in the Basin of Iguaçu River, incorporating rainfall information, based on artificial neural networks. Two types of rainfall data are available: measurements taken from stations distributed along the basin and ten-day rainfall forecasts using the ETA model developed by CPTEC (Brazilian Weather Forecating Center). The neural nework model also employs observed inflows measured by stations along the Iguaçu River, as well as historical data of the natural inflows to be predicted. Initially, we applied preprocessing methods on the various series, filling missing data and correcting outliers. This was followed by methods for selecting the most relevant variables for the forecast model. The results obtained demonstrate the potential of using artificial neural networks in this problem, which is highly non-linear and very complex, providing forecasts with good accuracy that can be used in planning the hydroelectrical operation of the Basin.

Keywords

Artificial Neural Networks Inflow Forecast Time Series Forecating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Previsões Numéricas CPTEC (2006), http://www.cptec.inpe.br/prevnum/
  3. 3.
    Black, T.L.: NMC Notes: The New NMC mesoscale Eta model: Description and forecast examples. Weather and Forecasting 9, 256–278 (1994)CrossRefGoogle Scholar
  4. 4.
    Pinto, N.L.S.: Hidrologia Básica (1976), ISBN: 85-212-0154-0 Google Scholar
  5. 5.
  6. 6.
    Cao, Y., Rossiter, D.: An Input Pre-screening Technique for control Structure Selection. Computers Chem. Engng. 21(6), 5363–5369 (1997)Google Scholar
  7. 7.
    Chung, F.-L., Duan, J.-C.: On Multistage Fuzzy Neural Network Modeling. IEEE Transactions on Fuzzy Systems 8, 125–816 (2000)CrossRefGoogle Scholar
  8. 8.
    Haykin, S.: Neural Networks – A Comprehensive Foundation. Macmillan College Publishing, Oxford (1998)Google Scholar
  9. 9.
    Mackay, David, J.C: Bayesian Non-Linear Modelling with Neural Networks. Cavendish Laboratory, Cambridge, UK (1995), http://wol.ra.phy.cam.ac.uk/is/papers/
  10. 10.
    Relatório Técnico Final de Metodologia, Projeto PreVIP: Modelo de Previsão de Vazões com Incorporação de Informações de Precipitação, ONS - PUC-Rio (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Karla Figueiredo
    • 1
  • Carlos R. Hall Barbosa
    • 2
  • André V. A. Da Cruz
    • 3
  • Marley Vellasco
    • 3
  • Marco Aurélio C. Pacheco
    • 3
  • Roxana J. Conteras
    • 3
  1. 1.Electrical and Telecommunications Engineering Department, UERJ, Rua São Francisco Xavier, 524, Maracanã - CEP 20550-900, Rio de Janeiro RJBrazil
  2. 2.ICA – Applied Computational Intelligence Laboratory, Post-graduation Program in Metrology, Pontifícia Universidade Católica of Rio de Janeiro, Rua Marquês de São Vicente, 225, Rio de Janeiro – 22453-900 – RJBrazil
  3. 3.Department of Electrical Engineering, Pontifícia Universidade Católica of Rio de Janeiro, Rua Marquês de São Vicente, 225, Rio de Janeiro – 22453-900 – RJBrazil

Personalised recommendations