Future Applications of DHM in Ergonomic Design

  • Heiner Bubb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4561)


Until now DHMs are especially used to design the dimensions of products and production assembly according to anthropometric demands. Recently DHMs are additionally equipped with strengths simulation so that also the dimensioning of reaction forces is possible. First steps are done to describe and evaluate the contact between human body and environment. Some examples will be shown. However in this area further important steps are necessary. Especially the self paced calculation of posture depending on this contact is to be realized. Some proposals exist for the contact of seat and body. Also first basic research is done in order to simulate motion behavior. Especially the detection of “leading body elements” as basic idea for this simulation can be seen as an initial step to generate modeling of cognitive human properties. However, in order to realize it the simulation of the properties of sense organs is necessary. Certain properties of the eyes can be simulated rather simple. Meanwhile some experience exits to understand the glance behavior depending on specific tasks (e.g. car driving). That can serve as basic for input to cognitive models. The output of these can be the track in space of the leading body element. On the other hand sensor organs properties in the field of hearing and climate are possible. In both cases the more difficult problem is to simulate the properties of the environment. General application field of these future development is the computer aided ergonomic design of workplaces in production lines and of products especially vehicles already in the definition and development phase. In this connection is to be considered that in future especially the design of information flow in these areas becomes dominant. An example is the growing development of assistance systems in cars. The application of DHMs will allow achieving the connection between information design and the necessary geometric design of the equipment.


Internal Model Sense Organ Body Element Driving Task Ergonomic Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Malek, K., Yang, J., Marler, T., Beck, S., Mathai, A., Zhou, X., Patrick, A., Arora, J.: Toward a new generation of virtual humans. International Journal of Human Factors Modeling and Simulation 1(1), 2–39 (2006)CrossRefGoogle Scholar
  2. 2.
    Allen, R.W., Jex, H.R., Magdaleno, R.E.:: Manual Control Performance and Dynamic Response during Sinusoidal Vibration. Wright-Patterson AFB, AMRL-TR-73-78 (1973)Google Scholar
  3. 3.
    Arlt, F.: Untersuchung zielgerichteter Bewegungen zur Simulation mit einem CAD-Menschmodell, Dissertation am Lehrstuhl für Ergonomie der Technischen Universität München, 1999 (1999) Google Scholar
  4. 4.
    Bernotat, R.: Anthropotechnik in der Fahrzeugführung. Ergonomics 13(3) (1970)Google Scholar
  5. 5.
    Bubb, H., Engstler, F., Fitzsche, F., Mergl, C., Sabbah, O., Schaefer, P., Zacher, I.: The development of RAMSIS in past and future as an example for the cooperation between industry and university. International Journal of Human Factors Modeling and Simulation 1(1), 140–157 (2006)CrossRefGoogle Scholar
  6. 6.
    Cherednichenko, A., Assmann, E., Bubb, H.: Experimental Study of Human Ingress Movements for Optimization of Vehicle Accessibility. In: Proceedings IEA Congress Maastricht 2006 (2006) Google Scholar
  7. 7.
    Cohen, A.S.: Augenbewegungen des Autofahrers bei Vorbeifahren an unvorhersehbaren Hindernissen und auf freier Strecke. Zeitschrift für Verkehrssicherheit 22 (1976)Google Scholar
  8. 8.
    Donges, E.: Ein regelungstechnisches Zwei-Ebenen-Modell des menschlichen Lenkverhaltens im Kraftfahrzeug. Zeitschrift für Verkehrssicherheit 24, S. 98–112 (1978)Google Scholar
  9. 9.
    Fritzsche, F.: Prediction of Discomfort during Arm Movements. In: Proceeding of the HCI-Congress, 2007, Beijing (2007)Google Scholar
  10. 10.
    Fritzsche, F.: Software-Schwingungs-Dummy. In: FAT-Bericht 189: Darstellung des Schwingungsverhaltens von Fahrzeug-Insassen. Symbiose aus Experiment und Simulation. Frankfurt (2005)Google Scholar
  11. 11.
    Geiser, G.: Mensch-Maschine-Kommunikation im Kraftfahrzeug. ATZ 87, 77-84 (1985)Google Scholar
  12. 12.
    Gengenbach, R.: Fahrerverhalten im Pkw mit Head-Up-Display. Gewöhnung und visuelle Aufmerksamkeit. VDI Fortschrittsbereichte Reihe 12: Verkehrstechnik/Fahrzeugtechnik. Nr. 330 (1997)Google Scholar
  13. 13.
    Guan H., Gao, Z., Guo, K., et al.: An Optimal Preview Acceleration Model for Velocity Control in Driver-Vehicle-Environment System. In: Proceeding of AVEC 2000, pp. S. 525–530, Ann Arbor (2000) Google Scholar
  14. 14.
    Ippili, R.K., Davies, P., Bajaj, A.K.: Prediction of Static Settling Point in a Seat Occupant System. VDI Bericht Nr. 1675. In: Digital Human Modeling Conference, Munich, 2002, pp. 377–404 (2002) Google Scholar
  15. 15.
    Jürgensohn, T.: Bedienermodellierung. In: Timpe, K.-P., Jürgensohn, T., Kolrep, H. (Hrsg.). Mensch-Maschine-Systemtechnik - Konzepte, Modellierung, Gestaltung, Evaluation, 2000, Symposion Publishing, Düsseldorf (2000)Google Scholar
  16. 16.
    Kolling, J.: Validierung und Weiterentwicklung eines CAD-Menschmodells für die Fahrzeuggestaltung, Dissertation am Lehrstuhl für Ergonomie der Technischen Universität München (1997)Google Scholar
  17. 17.
    Lindsay, P.H., Norman, D.H.: Human Information Processing. In: An Introduction to Psychology, Academic Press, New York, London (1972)Google Scholar
  18. 18.
    Marach, A.: CAD-fähiges Prognosemodell für statische Körperhaltungen des Menschen, Dissertation am Lehrstuhl für Ergonomie der technischen Universität München (1999)Google Scholar
  19. 19.
    Mergl, C., Bubb, H., Vogt, C., Kress, H.: Ergonomic Layout Process for a Driver Working Place in Cars. In: DHMC 2006 (2006)Google Scholar
  20. 20.
    Mergl, C., Klendauer, M., Mangen, C., Bubb, H.: Predicting long term riding comfort in cars by contact forces between human and seat. In: DHMC 2005 (2005)Google Scholar
  21. 21.
    Mergl, C.: Entwicklung eines Verfahrens zur Optimierung des Sitzkomforts auf Automobilsitzen, Dissertation am Lehrstuhl für Ergonomie der Technischen Universität München (2006)Google Scholar
  22. 22.
    Pöppel.: Grenzen des Bewusstseins - Wie kommen wir zur Zeit und wie entsteht Wirklichkeit? Insel Taschenbuch, Frankfurt a. M. und Leipzig (2000)Google Scholar
  23. 23.
    Rasmussen, J.: The definition of human error and a taxonomy for technical system design. In: Rasmussen, J., et al. (eds.) New technology and human error., Wiley & Sons Ltd, New York (1987)Google Scholar
  24. 24.
    Rassl, R.: Ablenkungswirkung tertiärer Aufgaben im Pkw - Systemergonomische Analyse und Prognose. Dissertation an der Technischen Universität München (2005)Google Scholar
  25. 25.
    Schaefer, P., Rudolph, H., Schwarz, W.: Digital man models and physical strength - a new approach in strength simulation. In: SAE Proceedings: digital human modelling for design and engineering, Dearborn (2000)Google Scholar
  26. 26.
    Schaefer, P., Rudolph, H., Schwarz, W.: Variable Force Limits for Optional Target Populations - a New Approach realized in CEN-Standardization. In: Proceedings of the 13th IEA, Tampere, vol. 4, S. 533–535 (1997) Google Scholar
  27. 27.
    Schaefer, P., Zacher, I.: On the way to autonomously moving manikins - empowered by discomfort feelings. In: submitted to the Proceedings of the 16th IEA, Maastricht (2006)Google Scholar
  28. 28.
    Schmale, G., Stelzle, W., Kreienfeld, T., Wolf, C.-D., Härtel, T., Jödicke, R.: COSYMAN, A Simulation Tool for Optimization of Seating Comfort in Cars. VDI Bericht Nr 1675, In: Digital Human Modeling Conference, Munich 2002, pp. 301–311(2002)Google Scholar
  29. 29.
    Schweigert, M.: Fahrerblickverhalten und Nebenaufgaben Dissertation an der Technischen Universität München (2003)Google Scholar
  30. 30.
    Seitz.: The optical measurement system PCMAN. In: Proceedings of the workshop on 3D Anthropometry and industrial product design, Université Paris V (1998)Google Scholar
  31. 31.
    Seitz, T., Recluta, D., Zimmermann, D.: An Approach for a Human Posture Prediction Model using Internal/external Forces and Discomfort. In: Proceedings of the SAE Conference, 2005 (2005)Google Scholar
  32. 32.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  33. 33.
    Steward, T.B., Ferrel, W.R.: Human Perception of Angular Acceleration and Implications in Motion Simulator. J. Aircraft 8, Mo. 4 (1971)Google Scholar
  34. 34.
    Treugut, F.: Untersuchung des Einflusses visueller Aufmerksamkeitsverlagerung auf die Sicherheit der Fahrzeugführung; Diplomarbeit an der Rhodes University, Grahamstown, Südafrika (2007)Google Scholar
  35. 35.
    Verver, M.M., van Hoof, J.: Vibration Analysis with MADYMO Human Models. VDI Bericht Nr. 1675. In: Digital Human Modeling Conference, Munich, 2002, pp. 447–456 (2002)Google Scholar
  36. 36.
    Yuhara, N., Horiuchi, S., Asanuma, N., et al.: Improvement of Vehicle Handling Quality Through Active Control of Steering Reaction Torque. In: Proceeding of AVEC 1992, Jokohama, S. 407–412 (1992)Google Scholar
  37. 37.
    Zacher, I., Bubb, H.: Ansatz zur Entwicklung eines Diskomfortmodells für Bewegungen, In: Proceedings of the Spring University, 2005, Balatonfüred, Hungary (2005)Google Scholar
  38. 38.
    Zwahlen, H.T., Adams Jr., C.C., DeBald, D.P.: Safety aspects of CRT touch panel controls in automobiles. In: Vision in Vehicles II. S.335/344, Elsevier North Holland Press, Amsterdam (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Heiner Bubb
    • 1
  1. 1.Lehrstuhl für Ergonomie, Technische Universität München 

Personalised recommendations