Multi-level Analysis and Information Extraction Considerations for Validating 4D Models of Human Function

  • Kostas Marias
  • Dimitra D. Dionysiou
  • Georgios S. Stamatakos
  • Fotini Zacharopoulou
  • Eleni Georgiadi
  • Thanasis Margaritis
  • Thomas G. Maris
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4561)

Abstract

Recent research trends focus on how multiscale biomedical information can be modeled and transformed into knowledge, in order to lead to a less interfering but also more individualized diagnosis and therapy. In order to assess the clinical importance of models of human pathology (e.g. cancer), it is necessary to validate them with prior and post treatment clinical data which in turn requires the determination of the tumor size and shape with high resolution, accuracy and precision, as well as structural and physiological information. This paper discusses some of the most important image analysis challenges in order to define an optimal method for extracting more accurate and precise anatomical and functional information related to the underlying pathology, which can be used for initializing and validating models of pathophysiology as well as simulations/predictions of the response to therapeutical regimes.

Keywords

Virtual Physiological Human biomedical data analysis modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrenbruch, C.P., Marias, K., Armitage, P.A., Yam, M., Moore, N.R., English, R.E., Clarke, P.J., Leong, F.J., Sir Brady, J.M.: Fusion of contrast-enhanced breast MR and mammographic imaging data. British Journal of Radiology 77, 201–208 (2004)CrossRefGoogle Scholar
  2. 2.
    Behrenbruch, C.P., Marias, K., Armitage, P.A., Yam, M., Moore, N., English, R.E., Clarke, P.J., Brady, M.: Fusion of Contrast-Enhanced Breast MR and Mammographic Imaging Data. In: Medical Image Analysis (MedIA), vol. 7(3), pp. 311–340. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Guimond, A., Roche, A., Ayache, N., Meunier, J.: Multimodal Brain Warping Using the Demons Algorithm and Adaptative Intensity Corrections. IEEE Transaction on Medical Imaging 20(1), 58–69 (2001)CrossRefGoogle Scholar
  4. 4.
    McInerney, T., Terzopolous, D.: Deformable models in medical image analysis: a survey. In: Medical Image Analysis, pp. 91–108. Oxford University Press, New York (1996)Google Scholar
  5. 5.
    Penney, G.P., Weese, J., Little, J.A., Hill, D.L.G., Hawkes, D.J.: A comparison of similarity measures for use in 2D-3D medical image registrtation. IEEE Transactions in Medical Imaging 17, 586–595 (1998)CrossRefGoogle Scholar
  6. 6.
    Marias, K., Ripoll, J., Meyer, H., Ntziachristos, V., Orphanoudakis, S.: Image Analysis for Assessing Molecular Activity Changes in Time-Dependent Geometries. IEEE Transactions on Medical Imaging, Special issue on Molecular Imaging 24(7) (July 2005)Google Scholar
  7. 7.
    Margaritis, T., Marias, K., Kafetzopoulos, D.: Improved Microarray Spot Segmentation by Combining two Information Channels. In: proceedings of the 2006 IEEE Engineering in Medicine and Biology Society (EMBS) Annual International Conference, IEEE. 2006, New York, USA (2006) Google Scholar
  8. 8.
    Bhujwalla, Z.M., Artemov, D., Glockner, J.: Tumor angiogenesis, vascularization,and contrast-enhanced magnetic resonance imaging. Top Magn Reson Imaging 10, 92–103 (1999)CrossRefGoogle Scholar
  9. 9.
    Highnam, R.P., Brady, J.M.: Mammographic Image Analysis. Kluwer Academic Publishers, Dordrecht (1999)MATHGoogle Scholar
  10. 10.
    Chen, Y., Dougherty, E.R, Bittner, M.L: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Optics 2, 364–374 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kostas Marias
    • 1
  • Dimitra D. Dionysiou
    • 2
  • Georgios S. Stamatakos
    • 2
  • Fotini Zacharopoulou
    • 3
  • Eleni Georgiadi
    • 1
    • 2
  • Thanasis Margaritis
    • 4
  • Thomas G. Maris
    • 3
  • Ioannis G. Tollis
    • 1
  1. 1.Biomedical Informatics Laboratory, ICS-FORTH, Vassilika Vouton, P.O. Box 1385, 71110 Heraklion, CreteGreece
  2. 2.In Silico Oncology Group, Laboratory of Microwaves and Fiber Optics Institute of Communication and Computer Systems School of Electrical and Computer Engineering National Technical University of Athens Iroon Polytechniou 9, GR-157 80 ZografosGreece
  3. 3.Medical Physics Department, University of Crete, Faculty of Medicine, HeraklionGreece
  4. 4.Institute of Molecular Biology and Biotechnology, IMBB -FORTH, Vassilika Vouton, P.O. Box 1385, 71110 Heraklion, CreteGreece

Personalised recommendations