Advertisement

Latest Development of an Interventional Radiology Training Simulation System: NeuroCath

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4561)

Abstract

We describe the latest development of a computer-based virtual reality environment for training interventional neuroradiology procedures. The system, NeuroCath (Neuroradiology Catheterization Simulator), includes extraction and construction of a vascular model from different imaging modalities that represents the anatomy of patient in a computationally efficient manner, and a finite element method (FEM) based physical model that simulates the interaction between the devices and neuro-vasculature. A realistic visual interface with multiple, synchronized windows and plenty of video control functions are developed. The latest version is also equipped with haptic feedback module that gives the sense of touch in real-time, and customizable vascular model so that trainer can understand the importance of vascular variations and practice. According to the validation in several clinical centers, 70%-75% of training features have been realized which makes the system well suitable for training of interventional neuroradiologists.

Keywords

interventional neuroradiology simulation augmented reality modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verel, D.: Cardiac Catheterization and Angiocardiography, 3rd edn. Longman, New York, USA (1978)Google Scholar
  2. 2.
    Ring, E.J., McLean, G.K.: Interventional Radiology: Principles and Techniques, Little, Brown, Boston, USA (1981)Google Scholar
  3. 3.
    Cotin, S., Luboz, V., Pergoraro, V., Neuman, P.F., Wu, X., Dawson, L.S.: High-fidelity simulation of interventional neuroradiology procedures. In: Proc. American Society of Neuroradiology ASNR May 23-27, 2005, Toronto, Canada, 443 (2005)Google Scholar
  4. 4.
    Meglan, D.: Making Surgical Simulation Real. Computer Graphics 30(4), 37–39 (1996)CrossRefGoogle Scholar
  5. 5.
    Ursino, M., Tasto, J.L., Nguyen, B.H., Cunningham, R., Merril, G.L.: Cathsim: An Intravascular Catheterization Simulator on a PC. Studies in Health Technology and Informatics 62, 360–366 (1999)Google Scholar
  6. 6.
    Barker, V.L.: CathSim. Studies in Health Technology and Informatics 62, 36–37 (1999)Google Scholar
  7. 7.
    Cotin, S., Dawson, S.L., Meglan, D., Shaffer, D.W., Ferrell, M.A., Bardsley, R.S., Morgan, F.M., Nagano, T., Nikom, J., Sherman, P., Walterman, M.T., Wendlandt, J.: ICTS, an Interventional Cardiology Training System. Studies in Health Technology and Informatics 70, 59–65 (2000)Google Scholar
  8. 8.
    Hahn, J.K., Kaufman, R., Winick, A.B., Carleton, T., Park, Y., Lindeman, R., Oh, K.M., Al-Ghreimil, N., Walsh, R.J., Loew, M., Gerber, J., Sankar, S.: Training Environment for Inferior Vena Caval Filter Placement. Studies in Health Technology and Informatics 50, 291–297 (1998)Google Scholar
  9. 9.
    Wang, Y., Chui, C., Cai, Y. et al.: Potential Field Supported Method for Contact Calculation in FEM Analysis of Catheter Navigation. In: 19th International Congress of Theoretical and Applied Mechanics, Kyoto, Japan 1996 (1996)Google Scholar
  10. 10.
    Chui, C., Nguyen, H., Wang, Y., Mullick, R., Raghavan, R., Anderson, J.: Potential field and anatomy vasculature for real-time computation in daVinci. In: 1st Visible Human Conference, Abstract:P113, Bethesda, MD, USA, October 1996 (1996)Google Scholar
  11. 11.
    Wang, Y., Chui, C., Lim, H., Cai, Y., Mak, K.: Real-Time Interactive Surgical Simulator for Catheterization Procedures. Journal of Computer Aided Surgery 3(5), 211–227 (1999)CrossRefGoogle Scholar
  12. 12.
    Chui, C., Wang, Y., Cai, Y., Lim, H., Ooi, Y., Mak, K.: ICard: An Interventional Cardiology Simulator for Percutaneous Coronary Revascularisation. In: Computer Assisted Radiology and Surgery (CAR’98), Tokyo, June 24-27, 1998 (1998)Google Scholar
  13. 13.
    Nowinski, W.L., Wang, Y.P., Srinivasan, R., Chui, C.K., Guo, H.H., Pang, P., Xu, M., Thiru, A.: Model-enhanced radiology. European Radiology 10(2), Supp. 1, 444 (2000)Google Scholar
  14. 14.
    Anderson, J.H., Chui, C.K., Li, Z.R., Ma, X., Cai, Y.Y., Wang, Y.P., Murrphy, K., Venbrux, A., Nowinski, W.L.: PC based simulator for cardiovascular catheterization and image guided therapy. In: 87th Radiological Society of North America Annual Meeting 2001, Chicago, USA (2001)Google Scholar
  15. 15.
    Chui, C.K., Li, Z.R., Anderson, J.H., Murphy, K., Venbrux, A., Ma, X., Wang, Z., Gailloud, P., Cai, Y.Y., Wang, Y., Nowinski, W.L.: Training and Planning of Interventional Neuroradiology Procedures - Initial Clinical Validation. In: Medicine Meets Virtual Reality (MMVR), Jan 23-26, 2002, vol. 85, pp. 96–102, IOS Press, CA (2002)Google Scholar
  16. 16.
    Ma, X., Zhao, L., Zheng, W.L., Volkau, I., Aziz, A., Nowinski, W.L.: Computer assisted interventional neuroradiology procedures: optimal path guidance and remote operation system. In: The 90th Radiological Society of North America, Chicago, USA, 2004, p. 831(2004)Google Scholar
  17. 17.
    Ma, X., Zhao, L., Aziz, A., Zaoli, Z., Jeremy, L.O.H., Nowinski, W.L.: The use of impedance sensors for intravascular navigation based on landmarks and a virtual map. In: Program 91st Radiological Society of North America Scientific 2005, Chicago, Illinois, USA, 27 November - 2 December 2005, p. 864 (2005)Google Scholar
  18. 18.
    Xin, M., Jun, T.D., Jiming, L., Volkau, L., Marchenko, Y., Nowinski, W.: A customizable training simulator for interventional radiology. In: Program 92st Radiological Society of North America Scientific 2006, Chicago, Illinois, USA, p. 791(2006)Google Scholar
  19. 19.
    Ma, X., Chui, C., Wang, Y., Nowinski, W.L.: Haptic Interfacing Device in Computer Simulator for Interventional Procedure. In: IEEE-EMBS Asia Pacific Conference on Biomedical Engineering, Hangzhou, China, September 2000 (2000)Google Scholar
  20. 20.
    Ma, X., Zhong, F., Chui, C., Cai, Y., Anderson, J., Nowinski, W.L.: Digital Balloon Inflation Device for Interventional Radiology. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 335–342. Springer, Heidelberg (2001)Google Scholar
  21. 21.
    Volkau, I., Zheng, W., Baimouratov, R., Aziz, A., Nowinski, W.L.: Geometric modeling of the human normal cerebral arterial system. IEEE Trans Med Imaging 24(4), 529–539 (2005)CrossRefGoogle Scholar
  22. 22.
    Xin, M., Lei, Z., Volkau, I., Weili, Z., Aziz, A., Ang, Jr., M.H., Nowinski, W.L.: A virtual reality simulator for interventional tele-radiology: concept, design, and initial validation. IEEE Biomedical Engineering 53(8), 1696–1700 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xin Ma
    • 1
    • 2
  1. 1.Biomedical Imaging Lab, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 30 Biopolis Stree, #07-01 Matrix, 138671Singapore
  2. 2.Centre for Human-Computer Interaction, Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences/The Chinese University of Hong Kong, F3 Building A, Nanshan Mega-Surplus Medical Equipments Industry Park, Gongye 3 Road, Skekou, Shenzhen, 518067China

Personalised recommendations