Simulating Cancer Radiotherapy on a Multi-level Basis: Biology, Oncology and Image Processing

  • Dimitra D. Dionysiou
  • Georgios S. Stamatakos
  • Kostas Marias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4561)

Abstract

Tumour growth and response to radiotherapeutic schemes is a markedly multiscale process which by no means can be reduced to only molecular or cellular events. Within this framework a new scientific area, i.e. in silico oncology has been proposed in order to address the previously mentioned hypercomplex process at essentially all levels of biocomplexity. This paper focuses on the case of imageable glioblastoma mulriforme response to radiotherapy and presents the basics of an essentially top-down modelling approach, aiming at an improved undestanding of cancer and at a patient-specific optimization of treatment.

Keywords

Radiotherapy Modelling Glioblastoma In silico oncology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zacharaki, E.I., Stamatakos, G.S., Nikita, K.S., Uzunoglu, N.K.: Simulating growth dynamics and radiation response of avascular tumour spheroid model validation in the case of an EMT6/Ro multicellular spheroid. Computer Methods and Programs in Biomedicine 76, 193–206 (2004)CrossRefGoogle Scholar
  2. 2.
    Dionysiou, D.D., Stamatakos, G.S., Uzunoglu, N.K., Nikita, K.S.: A computer simulation of in vivo tumor growth and response to radiotherapy: new algorithms and parametric results. Computers in Biology and Medicine 36, 448–464 (2006)CrossRefGoogle Scholar
  3. 3.
    Dionysiou, D.D., Stamatakos, G.S.: Applying a 4D multiscale in vivo tumor growth model to the exploration of radiotherapy scheduling: the effects of weekend treatment gaps and p53 gene status on the response of fast growing solid tumors. Cancer Informatics 2, 113–121 (2006)Google Scholar
  4. 4.
    Dionysiou, D.D., Stamatakos, G.S., Uzunoglu, N.K., Nikita, K.S., Marioli, A.: A Four Dimensional In Vivo Model of Tumour Response to Radiotherapy: Parametric Validation Considering Radiosensitivity, Genetic Profile and Fractionation. J. theor. Biol. 230, 1–20 (2004)CrossRefGoogle Scholar
  5. 5.
    Stamatakos, G.S., Dionysiou, D.D., Zacharaki, E.I., Mouravliansky, N.A., Nikita, K.S., Uzunoglu, N.K.: In silico radiation oncology: combining novel simulation algorithms with current visualization techniques. In: IEEE Proceedings: Special Issue on Bioinformatics: Advances and Chalenges vol. 90, pp. 1764–1777 (2002)Google Scholar
  6. 6.
    Stamatakos, G.S., Antipas, V.P., Uzunoglu, N.K.: Simulating chemotherapeutic schemes in the individualized treatment context: The paradigm of glioblastoma multiforme treated by temozolomide in vivo. Comput Biol Med. 36, 1216–1234 (2006)CrossRefGoogle Scholar
  7. 7.
    Stamatakos, G.S., Antipas, V.P., Uzunoglu, N.K.: A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: the paradigm of glioblastoma multiforme treated by temozolomide. IEEE Transactions on Biomedical Engineering 53(8), 1467–1477 (2006)CrossRefGoogle Scholar
  8. 8.
    Stamatakos, G.S., Antipas, V.P., Uzunoglu, N.K., Dale, R.G.: A four dimensional computer simulation model of the in vivo response to radiotherapy of glioblastoma multiforme: studies on the effect of clonogenic cell density. British Journal of Radiology 79, 389–400 (2006)CrossRefGoogle Scholar
  9. 9.
    Zacharopoulou, F., Marias, K., Georgiadi, E., Tollis, G., Maris, T.G.: Optimized MR Imaging methology for tumour characterization. In: Proc. 2nd International Advanced Research Workshop on In Silico Oncology, Kolympari, Chania, Greece, September 25-26, 2006, pp. 46–47 (2006)Google Scholar
  10. 10.
    Marias, K., Margaritis, Th., Zacharopoulou, F., Georgiadi, E., Maris, T.G., Tollis, G., Behrenbruch, C.P.: Multi-level analysis and information extraction considerations for validating 4D models of human function. In: Proc. 2nd International Advanced Research Workshop on In Silico Oncology, Kolympari, Chania, Greece, September 25-26, 2006, pp. 48–50 (2006)Google Scholar
  11. 11.
    Werner-Wasik, M., et al.: Final report of a phase I/II trial of hyperfractionated and accelerated hyperfractionated radiation therapy with carmustine for adults with supratentorial malignant gliomas. Cancer 77, 1535–1543 (1996)CrossRefGoogle Scholar
  12. 12.
    Haas-Kogan, D.A., Yount, G., Haas, M., Levi, D., Kogan, S.S., Hu, L., Vidair, C., Deen, D.F., Dewey, W.C., Israel, M.A.: p53-dependent G1 arrest and p53 independent apoptosis influence the radiobiologic response of glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 36, 95–103 (1996)CrossRefGoogle Scholar
  13. 13.
    Kocher, M., Treuer, H., Voges, J., Hoevels, M., Sturm, V., Mueller, R.P.: Computer simulation of cytotoxic and vascular effects of radiosurgery in solid and necrotic brain metastases. Radiother. Oncol. 54, 149–156 (2000)CrossRefGoogle Scholar
  14. 14.
    Jones, B., Dale, R.G.: Mathematical models of tumour and normal tissue response. Acta Oncol. 38, 883–893 (1999)CrossRefGoogle Scholar
  15. 15.
    Hegedues, B., Czirok, A., Fazekas, I., Babel, T., Madarasz, E., Viscsek, T.: Locomotion and proliferation of glioblastoma cells in vitro: statistical evaluation of videomicroscopic observations. J. Neurosurgery 92, 428–434 (2000)CrossRefGoogle Scholar
  16. 16.
    Nakajima, M., Nakasu, S., Morikawa, S., Inubushi, T.: Estimation of volume doubling time and cell loss in an experimental rat glioma model in vivo. Acta. Neurochir. 140, 607–613 (1998)CrossRefGoogle Scholar
  17. 17.
    Tribius, S., Pidel, A., Casper, D.: ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int. J. Radiat. Oncol. Biol. Phys. 50, 511–523 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dimitra D. Dionysiou
    • 1
  • Georgios S. Stamatakos
    • 1
  • Kostas Marias
    • 2
  1. 1.In Silico Oncology Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou 9, GR-157 80 ZografosGreece
  2. 2.Biomedical Informatics Laboratory, Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, P.O. Box 1385, 71110 Heraklion, CreteGreece

Personalised recommendations