Human Motion Simulation and Action Corpus

  • Gang Zheng
  • Wanqing Li
  • Philip Ogunbona
  • Liju Dong
  • Igor Kharitonenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4561)

Abstract

Acquisition of large scale good quality training samples is becoming a major issue in machine learning based human motion analysis. This paper presents a method to simulate continuous gross human body motion with the intention to establish a human motion corpus for learning and recognition. The simulation is achieved by a temporal-spatialtemporal decomposition of human motion into actions, joint actions and actionlets based on the human kinematic model. The actionlet models the primitive moving phase of a joint and represents the muscle movement governed by kinesiological principles. Joint actions and body actions are constructed from actionlets through constrained concatenation and synchronization. Methods for concatenation and synchronization are proposed in this paper. An action corpus with small number of action vocabularies is created to verify the feasibility of the proposed method.

Keywords

Human Motion Actions Simulation Motion Editing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81, 231–268 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Moeslund, T.B., Hilton, A., Kruger, V.: A survey of advanced in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 90–126 (2006)CrossRefGoogle Scholar
  3. 3.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man and Cybernetics, Part C 34(3), 334–352 (2004)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Liu, Y., Huang, T.S.: Motion analysis of articulated objects from monocular images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 625–636 (2006)CrossRefGoogle Scholar
  5. 5.
    Green, R.D., Guan, L.: Quantifying and recognizing human movement patterns from monocular video images–Part I: A new framework for modelling human motion. IEEE Trans Circuits and Systems for Video Technology 14(2), 179–190 (2004)CrossRefGoogle Scholar
  6. 6.
    Boulic, R., Magnenat-Thalmann, N., Thalmann, D.: A global human walking model with real-time kinematic personification. International Journal of Computer Graphics 6(6), 344–358 (1990)Google Scholar
  7. 7.
    Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. Proceedings of ACM Transactions on Graphics 22(3), 417–426 (2003)CrossRefGoogle Scholar
  8. 8.
    Xiao, Z., Yang, X., Zhang, J.J.: Motion data correction and extrapolation using physical constraints. In: IEEE Proceedings of the 9th International Conference on Information Visualisation (IV 2005), vol. 00, pp. 571–576 (2005)Google Scholar
  9. 9.
    Faraway, J.: Human animation using nonparametric regression. Department of Statistics University of Michigan, Tech. Rep. 382 (2002)Google Scholar
  10. 10.
    Ijspeert, A., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, May 2002, vol. 2 , pp. 1398–1403 (2002)Google Scholar
  11. 11.
    Pettre, J., Simeon, T., Laumond, J.: Planning human walk in virtual environments. IEEE / RSJ International Conference on Intelligent Robots and Systems (IROS 2002) vol. 3, pp. 3048–3053 (September 2002)Google Scholar
  12. 12.
    Chang, C.-C., Brownb, D.R., Bloswickb, D.S., Hsiang, S.M.: Biomechanical simulation of manual lifting using spacetime optimization. Journal of Biomechanics 34(4), 527–532 (2001)CrossRefGoogle Scholar
  13. 13.
    Park, W., Chaffin, D.B., Martin, B.J., Faraway, J.J.: A computer algorithm for representing spatial-temporal structure of human motion and a motion generalization method. Journal of Biomechanics 33, 2321–2329 (2005)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    [Online] Available: http://www.anybodytech.com
  16. 16.
    Wrotek, P., Jenkins, O.C., McGuire, M.: Dynamo: dynamic, data-driven character control with adjustable balance. In: sandbox ’06: Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames, pp. 61–70. ACM Press, New York, USA (2006)Google Scholar
  17. 17.
    Kry, P.G., Pai, D.K.: Interaction capture and synthesis. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pp. 872–880. ACM Press, New York, USA (2006)CrossRefGoogle Scholar
  18. 18.
    Xia, S., Qiu, X., Wang, Z.: A novel framework for athlete training based on interactive motion editing and silhouette analysis. In: VRST 2005: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 56–58. ACM Press, New York, USA (2005)CrossRefGoogle Scholar
  19. 19.
    Soderberg, G.L.: Kinesiology application to pathological motion, 1st edn. Williams & Wilkins (1986)Google Scholar
  20. 20.
    Zheng, G., Li, W., Ogunbona, P., Dong, L., Kharitonenko, I.: Simulation of human motion for learning and recognition. In: AI 2006. LNCS (LNAI), vol. 4304, pp. 1168–1172. Springer, Heidelberg (2006)Google Scholar
  21. 21.
    Tözeren, A.: Human Body Dynamics. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Zatsiorsky, V.M.: Kinematics of Human Motion, 1st edn. Human Kinetics (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gang Zheng
    • 1
  • Wanqing Li
    • 1
  • Philip Ogunbona
    • 1
  • Liju Dong
    • 1
    • 2
  • Igor Kharitonenko
    • 1
  1. 1.School of Computer Science and Software Engineering, University of WollongongAustralia
  2. 2.College of Information Engineering, Shenyang UniversityP.R. of China

Personalised recommendations