An Architecture for Adaptive and Adaptable Mobile Applications for Physically Handicapped People

  • Matthias Betz
  • Mahmudul Huq
  • Volkmar Pipek
  • Markus Rohde
  • Gunnar Stevens
  • Roman Englert
  • Volker Wulf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4554)


Context-awareness is an important capability needed in devices in a ubiquitous computing environment. Ubiquitous computing devices use different types of sensors along with the user’s interaction history in order to collect and store data. This data is then used to adapt the user’s behavior to suit the current environment. In addition to the explicit modifications by user control, the behavior of these computing devices along with the interaction amongst one another depends on the continuously changing environment conditions. These characteristics require the development of systems that have both, adaptive and an adaptable nature. Context-awareness is particularly important for physically handicapped people. This is due to the fact that context-aware ubiquitous devices are able to help them detect changes in the surrounding, which handicapped people can not do for themselves. In this research paper we suggest a general architecture of Context-Aware Adaptable System (CAAS). We exemplify this architecture with an Ambient Service prototype that we have developed.


Context-Aware Adaptable System (CAAS) Ambient Service (AS) End User Development (EUD) Adaptivity Adaptability Mediation 


  1. 1.
    Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing Journal 5(1) (2001)Google Scholar
  2. 2.
    Dourish, P.: Seeking a Foundation for Context-Aware Computing. Human Computer Interaction 16 (2001)Google Scholar
  3. 3.
    Want, R., Pering, T.: System Challenges for Ubiquitous & Pervasive Computing. In: ICSE 2005. LNCS, vol. 4309, Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Dey, A.K., Mankoff, J.: Designing Mediation for Context-Aware Applications. ACM Transactions on Computer-Human Interaction (TOCHI) 12(1) (2005)Google Scholar
  5. 5.
    Davis, A.B., Moore, M.M., Storey, V.C.: Context-Aware Communication for Severely Disabled Users. In: CUU 2003, Vancouver, British Columbia, Canada (2003)Google Scholar
  6. 6.
    Alm, N., Arnott, J.L., Newell, A.F.: Prediction and Conversational Momentum in an Augmentative Communication System. Communication System 35 (1992)Google Scholar
  7. 7.
    Copestake, A.: Applying Natural Language Processing Techniques to Speech Prostheses. In: AAAI Fall Symposium on Developing Assistive Technology for People with Diabilities (1996)Google Scholar
  8. 8.
    Adams, L., Hunt, L., Moore, M. (2003). The “Aware System”-Prototyping an Augmentative Communication Interface. RESNA (2003)Google Scholar
  9. 9.
    Zajicek, M.: A Special Design Approach for Special People. In: Miesenberger, K., Klaus, J., Zagler, W., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Bellotti, V., Edwards, K.: Intelligibility and Accountability: Human Considerations in Context –Aware Systems. Human-Computer Interaction 16 (2001)Google Scholar
  11. 11.
    Fischer, G.: Beyond ‘Couch Potatoes’: from Consumers to Designers and Active Contributors (2002),
  12. 12.
    Lieberman, H., Paterno, F., Wulf, V. (eds.): End User Development. Springer, Germany (2005)Google Scholar
  13. 13.
    Wulf, V.: Anpassbarkeit im Prozess Evolutionäre Systementwicklung. GMD-Spiegel 3 (1994)Google Scholar
  14. 14.
    Lieberman, H. (ed.): Your Wish is My Command: Giving Users the Power to Instruct their Software. Morgen Kaufmann, San Francisco (2000)Google Scholar
  15. 15.
    Dey, A.K., Hamid, R., Beckmann, C., Li, I., Hsu, D.: A CAPpella: Programming By Demonstration of Context-Aware Applications. In: SIGCHI Conference on Human Factors in Computing Systems, CHI (2004)Google Scholar
  16. 16.
    Stevens, G., Wulf, V., Rohde, M., Zimmermann, A.: Ubiquitous Fitness Support Starts in Everyday’s Context. In: The 6th World Conference The Engineering of Sport (2006)Google Scholar
  17. 17.
    Krogsæter, M., Oppermann, R., Thomas, C.: A user interface integrating adaptability and adaptivity. In: Oppermann, R. (ed.) Adaptive User Support: Ergonomic Design of Manually and Automatically Adaptable Software, Lawrence Erlbaum Associates, Hillsdale, NJ, USA (1994)Google Scholar
  18. 18.
    Morch, A., Stevens, G., Won, M., Klann, M., Dittreich, Y., Wulf, V.: Component-Based Technologies for End-User Development. Communication of the ACM 47(9) (2004)Google Scholar
  19. 19.
    Stevens, G., Wulf, V.: A New Dimension in Access Control: Studying Maintenance Engineering Across Organizational Boundaries. In: CSCW 2002 (2002)Google Scholar
  20. 20.
    Stiemerling, O.: Component-Based Tailorability. PhD thesis, Department of Computer Science, University of Bonn (2000)Google Scholar
  21. 21.
    Zimmermann, A., Lorentz, A., Specht, M.: Applications of a Context-Management System. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Zimmermann, A., Specht, M., Lorentz, A.: Personalization and Context-Management User Modeling and User-Adapted Interaction. Journal of Personalization Research (UMUUAI) (2000)Google Scholar
  23. 23.
    Hallenberger, M.: Eine 3D Benutzerschnittstelle für komponentenbasierte Anpassbarkeit. Diplomarbeit, University of Bonn (2000)Google Scholar
  24. 24.
    Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-Wesley, Reading (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Matthias Betz
    • 1
  • Mahmudul Huq
    • 1
  • Volkmar Pipek
    • 1
  • Markus Rohde
    • 1
  • Gunnar Stevens
    • 1
  • Roman Englert
    • 2
  • Volker Wulf
    • 1
  1. 1.Faculty of Information System and New Media, University of Siegen, SiegenGermany
  2. 2.T-Laboratories at Ben-Gurion University (of the Negev), Israel, Beer-Sheva 84105Israel

Personalised recommendations