Advertisement

Continuation-Passing Style and Strong Normalisation for Intuitionistic Sequent Calculi

  • José Espírito Santo
  • Ralph Matthes
  • Luís Pinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4583)

Abstract

The intuitionistic fragment of the call-by-name version of Curien and Herbelin’s \({{\overline{\lambda}} \mu \tilde{\mu}}\)-calculus is isolated and proved strongly normalising by means of an embedding into the simply-typed λ-calculus. Our embedding is a continuation-and-garbage-passing style translation, the inspiring idea coming from Ikeda and Nakazawa’s translation of Parigot’s λμ-calculus. The embedding simulates reductions while usual continuation-passing-style transformations erase permutative reduction steps. For our intuitionistic sequent calculus, we even only need “units of garbage” to be passed. We apply the same method to other calculi, namely successive extensions of the simply-typed λ-calculus leading to our intuitionistic system, and already for the simplest extension we consider (λ-calculus with generalised application), this yields the first proof of strong normalisation through a reduction-preserving embedding.

Keywords

Reduction Rule Critical Pair Natural Deduction Sequent Calculus Typing Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthe, G., Hatcliff, J., Sørensen, M.: A notion of classical pure type system (preliminary version). In: Brookes, S., Mislove, M. (eds.) Proc. of the 30th Conf. on the Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science, vol. 6, p. 56. Elsevier, Amsterdam (1997)Google Scholar
  2. Barthe, G., Hatcliff, J., Sørensen, M.: Cps translations and applications: The cube and beyond. Higher-Order and Symbolic Computation 12(2), 125–170 (1999)MATHCrossRefGoogle Scholar
  3. Curien, P.-L., Herbelin, H.: The duality of computation. In: ICFP ’00. Proc. of 5th ACM SIGPLAN Int. Conf. on Functional Programming, Montréal, pp. 233–243. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  4. de Groote, P.: On the strong normalisation of intuitionistic natural deduction with permutation-conversions. Information and Computation 178, 441–464 (2002)MATHCrossRefGoogle Scholar
  5. Dragalin, A.: Mathematical Intuitionism. Translations of Mathematical Monographs, vol. 67. AMS (1988)Google Scholar
  6. Dyckhoff, R., Urban, C.: Strong normalisation of Herbelin’s explicit substitution calculus with substitution propagation. Journal of Logic and Computation 13(5), 689–706 (2003)MATHCrossRefGoogle Scholar
  7. Espírito Santo, J.: Completing Herbelin’s programme (in this volume).Google Scholar
  8. Espírito Santo, J., Pinto, L.: Permutative conversions in intuitionistic multiary sequent calculus with cuts. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 286–300. Springer, Heidelberg (2003)Google Scholar
  9. Felleisen, M., Friedman, D., Kohlbecker, E., Duba, B.: Reasoning with continuations. In: 1st Symposium on Logic and Computer Science, pp. 131–141. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  10. Griffin, T.: A formulae-as-types notion of control. In: ACM Conf. Principles of Programming Languages, pp. 47–58. ACM Press, New York (1990)Google Scholar
  11. Herbelin, H.: C’est maintenant qu’on calcule, Habilitation Thesis, Paris XI (2005)Google Scholar
  12. Hofmann, M., Streicher, T.: Continuation models are universal for lambda-mu-calculus. In: Proc. of LICS 1997, pp. 387–395. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  13. Ikeda, S., Nakazawa, K.: Strong normalization proofs by CPS-translations. Information Processing Letters 99, 163–170 (2006)CrossRefGoogle Scholar
  14. Joachimski, F., Matthes, R.: Standardization and confluence for a lambda-calculus with generalized applications. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 141–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic 42(1), 59–87 (2003)MATHCrossRefGoogle Scholar
  16. Lengrand, S.: Call-by-value, call-by-name, and strong normalization for the classical sequent calculus. In: Gramlich, B., Lucas, S. (eds.) WRS’03. Post-proc. of the 3rd Workshop on Reduction Strategies in Rewriting and Programming. Electronic Notes in Theoretical Computer Science, vol. 86, Elsevier, Amsterdam (2003)Google Scholar
  17. Lengrand, S., Dyckhoff, R., McKinna, J.: A sequent calculus for type theory. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 441–455. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoretical Computer Science 192, 3–29 (1998)MATHCrossRefGoogle Scholar
  19. Nakazawa, K., Tatsuta, M.: Strong normalization of classical natural deduction with disjunctions (Submitted)Google Scholar
  20. Nakazawa, K., Tatsuta, M.: Strong normalization proof with CPS-translation for second order classical natural deduction. Journal of Symbolic Logic 68(3), 851–859 (2003), Corrigendum: 68(4), 1415–1416 (2003)Google Scholar
  21. Plotkin, G.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1, 125–159 (1975)MATHCrossRefGoogle Scholar
  22. Polonovski, E.: Strong normalization of lambda-mu-mu-tilde with explicit substitutions. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 423–437. Springer, Heidelberg (2004)Google Scholar
  23. Sabry, A., Wadler, P.: A reflection on call-by-value. In: Proc. of ACM SIGPLAN Int. Conf. on Functional Programming ICFP 1996, pp. 13–24. ACM Press, New York (1996)CrossRefGoogle Scholar
  24. Schwichtenberg, H.: Termination of permutative conversions in intuitionistic Gentzen calculi. Theoretical Computer Science 212(1-2), 247–260 (1999)MATHCrossRefGoogle Scholar
  25. Urban, C., Bierman, G.: Strong normalisation of cut-elimination in classical logic. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 365–380. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • José Espírito Santo
    • 1
  • Ralph Matthes
    • 2
  • Luís Pinto
    • 1
  1. 1.Departamento de Matemática, Universidade do MinhoPortugal
  2. 2.C.N.R.S. and University of Toulouse IIIFrance

Personalised recommendations