Novel Hybrid Bioelectrodes for Ambulatory Zero-Prep EEG Measurements Using Multi-channel Wireless EEG System

  • Robert Matthews
  • Neil J. McDonald
  • Harini Anumula
  • Jamison Woodward
  • Peter J. Turner
  • Martin A. Steindorf
  • Kaichun Chang
  • Joseph M. Pendleton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4565)

Abstract

This paper describes a wireless multi-channel system for zero-prep electroencephalogram (EEG) measurements in operational settings. The EEG sensors are based upon a novel hybrid (capacitive/resistive) bioelectrode technology that requires no modification to the skin’s outer layer. High impedance techniques developed for QUASAR’s capacitive electrocardiogram (ECG) sensors minimize the sensor’s susceptibility to common-mode (CM) interference, and permit EEG measurements with electrode-subject impedances as large as 107 Ω. Results for a side-by-side comparison between the hybrid sensors and conventional wet electrodes for EEG measurements are presented. A high level of correlation between the two electrode technologies (>99 subjects seated) was observed. The electronics package for the EEG system is based upon a miniature, ultra-low power microprocessor-controlled data acquisition system and a miniaturized wireless transceiver that can operate in excess of 72 hours from two AAA batteries.

Keywords

EEG biosensors high impedance wireless 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matthews, R., McDonald, N.J., Trejo, L.J.: Psycho-Physiological Sensor Techniques: An Overview. In: 11th International Conference on Human Computer Interaction (HCII), pp. 22–27. Las Vegas, NV (July 2005)Google Scholar
  2. 2.
    St. John, M., Kobus, D.A., Morrison, J.G., Schmorrow, D.: Overview of the DARPA Augmented Cognition Technical Integration Experiment. International Journal of Human-Computer Interaction. 17, 131–149 (2004)CrossRefGoogle Scholar
  3. 3.
    Sullivan IV, J.J.: Fighting Fatigue. Public Roads 67, 18–23 (2003)Google Scholar
  4. 4.
    Wolpaw, J.R., McFarland, D.J.: An EEG-based brain-computer interface for cursor control. Electroenceph. Clin. Neruphysiol. 78, 252–259 (1991)Google Scholar
  5. 5.
    Ferree, T.C., Luu, P., Russell, G.S., Tucker, D.M.: Scalp electrode impedance, infection risk, and EEG data quality. Clinical Neurophysiology 112, 536–544 (2001)CrossRefGoogle Scholar
  6. 6.
    Matthews, R., McDonald, N.J., Fridman, I., Hervieux, P., Nielsen, T.: The invisible electrode - zero prep time, ultra low capacitive sensing. In: 11th International Conference on Human Computer Interaction (HCII), pp. 22–27. Las Vegas, NV (July 2005)Google Scholar
  7. 7.
    Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958)Google Scholar
  8. 8.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews 29, 169–195 (1958)CrossRefGoogle Scholar
  9. 9.
    Gevins, A., Smith, M.E., Leong, H., McEvoy, L., Whitfield, S., Du, R., Rush, G.: Monitoring working memory load during computer-based tasks with EEG pattern recognition. Human Factors 40, 79–91 (1998)CrossRefGoogle Scholar
  10. 10.
    Wallerius, J., Trejo, L.J., Matthews, R., Rosipal, R., Caldwell, J.A.: Robust feature extraction and classification of EEG spectra for real-time classification of cognitive state. In: 11th International Conference on Human Computer Interaction (HCII), pp. 22–27. Las Vegas, NV (July 2005)Google Scholar
  11. 11.
    Trejo, L.J., Matthews, B., Rosipal, R.: Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 225–229 (2006)CrossRefGoogle Scholar
  12. 12.
    Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Human Factors 45, 635–643 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert Matthews
    • 1
  • Neil J. McDonald
    • 1
  • Harini Anumula
    • 1
  • Jamison Woodward
    • 1
  • Peter J. Turner
    • 1
  • Martin A. Steindorf
    • 1
  • Kaichun Chang
    • 1
  • Joseph M. Pendleton
    • 1
  1. 1.Quantum Applied Science and Research, 5764 Pacific Center Blvd., #107, San Diego, CA,92121USA

Personalised recommendations