Low Power Technology for Wearable Cognition Systems

  • David C. Yates
  • Alexander Casson
  • Esther Rodriguez-Villegas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4565)

Abstract

This paper analyses a key tradeoff behind miniature devices intended to monitor cognition-related parameters. These devices are supposed to be worn by people that would otherwise be carrying on a normal life and this factor imposes important constraints in the design. They have to be wireless, wearable, discrete, low maintenance and reliable. In order to reduce power intelligence will be built into the sensors aiming to reduce the data transmission to only that information that it is strictly necessary. This intelligence will be in the form of an algorithm which will be required to be implemented in electronic circuits as part of the system. The complexity of the algorithm affects the complexity of the electronics and hence the power consumption. This, in turn affects the size of the battery and the overall size of the device. For the sensor to be low maintenance the device must operate for extended periods from the battery, adding more constraints to the power consumption of the electronic circuits. The battery must be kept small so that the overall size of the device is small and lightweight enough to be worn on the body and the more discrete the device the higher consumer compliance. A tradeoff has to be met between the algorithm complexity, the power consumption of the electronics required to realize the latter, the power consumption required to transmit data and the battery size and lifetime.

Keywords

Ambulatory EEG low-power wearable wireless cognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berka, C., et al.: Real Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal of Human-Computer Interaction 17(2), 151–170 (2004)CrossRefGoogle Scholar
  2. 2.
    St. John, M., et al.: Overview of DARPA Augmented Cognition Technical Integration Experiment. International Journal of Human-Computer Interaction 17(2), 131–149 (2004)CrossRefGoogle Scholar
  3. 3.
    Energy Efficient Technologies for the Dismounted Soldier. Committee on Electric Power for the Dismounted Soldier. National Academy Press, Washington D.C. (1997)Google Scholar
  4. 4.
    Lin, C.-T., Wu, R.-C., Liang, S.-F., Chao, W.-H., Chen, Y.-J., Jung, T.-P.: EEG-Based Drowsiness Estimation for Safety Driving Using Independent Component Analysis. IEEE Transactions on Circuits and Systems—I: Regular Papers 52(12), 2726–2738 (2005)CrossRefGoogle Scholar
  5. 5.
    Berka, C., et al.: EEG Indices Distinguish Spatial and Verbal Working Memory Processing: Implications for Real-Time Monitoring in a Closed-Loop Tactical Tomahawk Weapons Simulation. Foundations of Augmented Cognition. In: Schmorrow, D.D. (ed.) Proceedings of the International Conference on Human Computer Interaction, vol. 11, Las Vegas, Nevada (July 2005)Google Scholar
  6. 6.
    Hillyard, S.A., Hink, R.F., Schwent, V.L., Picton, T.W.: Electrical Signs of Selective Attention in the Human Brain. Science, New Series 182(4108), 177–180 (1973)Google Scholar
  7. 7.
    Waterhouse, E.: New horizons in ambulatory electroencephalography. IEEE Engineering in Medicine and Biology Magazine, 74-80 (May/June 2003)Google Scholar
  8. 8.
    Ambulatory, E.E.G.: R & D Fact sheet, IMEC 2004, [online] available at http://www.imec.be/human/
  9. 9.
    Harrison, R.R., Charles, C.: A low-power low-noise CMOS amplifier for neural recording applications. IEEE Journal of Solid-State Circuits 38(6), 958–965 (2003)CrossRefGoogle Scholar
  10. 10.
    Yates, D.C., Villegas-Rodriguez, E.: An ultra low power low noise chopper amplifier for wireless EEG. Invited Paper. In: 49th IEEE Midwest Symposium on Circuits and Systems, Suan Juan, Puerto Rico (August 6-9, 2006)Google Scholar
  11. 11.
    Erdogmus, D., Adami, A., Pavel, M., Lan, T., Mathan, S., Whitlow, S., Dorneich, M.: Cognitive State Estimation Based on EEG for Augmented Cognition. In: Proc. 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, v – viii (March 16-19, 2005)Google Scholar
  12. 12.
    Sauerbrey, J., Schmidt-Landsiedel, D., Thewes, R.: A 0.5 V 1 mW Successive Approximation ADC. IEEE Journal of Solid-State Circuits 38(7), 1261–1265 (2003)CrossRefGoogle Scholar
  13. 13.
    Product specification: Single-chip 2.4 GHz Transceiver, Nordic Semiconductor (2004), [online] available: http://www.nordicsemi.no
  14. 14.
    Bluetooth solutions from Texas Instruments. Product bulletin, Texas Instruments (2004), [online] available: http://focus.ti.com/
  15. 15.
    XS110 UWB solution for media-rich wireless applications. Freescale Semiconductor (2004) [online] available: http://www.freescale.com/
  16. 16.
    Zarlink ZL70100 Datasheet (May 2005), [Online] available at: http://www.zarlink.com/
  17. 17.
    Cooper, R., Osselton, J.W., Shaw, J.C.: EEG Technology, 2nd edn. Butterworth & Co, London (1974)Google Scholar
  18. 18.
    Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J.: Power Sources for Wireless Sensor Networks. In: Karl, H., Wolisz, A., Willig, A. (eds.) Wireless Sensor Networks. LNCS, vol. 2920, pp. 1–17. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Binnie, C.D., Rowan, A.J., Gutter, T.: A manual of electroencephalographic technologyz. Cambridge University Press, Cambridge (1982)Google Scholar
  20. 20.
    Antoniol, G., Tonella, P.: EEG data compression techniques. IEEE Transactions on Biomedical Engineering 44(2), 105–114 (1997)CrossRefGoogle Scholar
  21. 21.
    Cardenas-Barrera, J., Lorenzo-Ginori, J., Rodriguez-Valdivia, E.: A wavelet-packets based algorithm for EEG signal compression. Medical Informatics and the Internet in Medicine 29(1), 15–27 (2004)CrossRefGoogle Scholar
  22. 22.
    Smith, P.E.M., Wallace, S.J.: Clinicians guide to epilepsy. Arnold, London (2001)Google Scholar
  23. 23.
    Gotman, J.: Automatic detection of seizures and spikes. J Clinical Neurophysiology 16(2), 130–140 (1999)CrossRefGoogle Scholar
  24. 24.
    Coninx, N.: Automated detection of epileptic events in the interictal EEG using the wavelet transform. Bachelors thesis, Universiteit Maastricht (2005)Google Scholar
  25. 25.
    Patel, S.: Intelligent low power circuit for electroencephalography. Master’s thesis, Imperial College London (2006)Google Scholar
  26. 26.
    Parikh, P., Micheli-Tzanakou, E.: Detecting drowsiness while driving using wavelet transform. Bioengineering Conference. In: Proceedings of the IEEE 30th Annual Northeast, pp. 79–80 (April 17-18, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David C. Yates
    • 1
  • Alexander Casson
    • 1
  • Esther Rodriguez-Villegas
    • 1
  1. 1.Circuits and Systems, Dept. Electrical and Electronic Engineering, Imperial College London,SW7 2AZUK

Personalised recommendations