Lighting-by-Example with Wavelets

  • Hai Nam Ha
  • Patrick Olivier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4569)


Automatic lighting design aims to provide users with semi-automated approaches, and easy-to-use tools, to configure lighting for 3D scenes. We present LightOpex the first fully automatic example-based local illumination lighting design system. Utilizing a wavelet-based lighting design framework, by which image quality is modeled using a cognitively inspired objective function, this approach to lighting design both: (1) allows the declarative specification of lighting; and (2) facilitates intuitive and natural specification of scene lighting. LightOpex enables users to select the desired lighting for a scene using exemplar 2D images and uses the spatial distribution of the luminance in these images as the target values of an optimization step. We demonstrate the utility of LightOpex through a range of examples, and conduct a preliminary investigation of the performance of a number of different of optimization schemes.


Spatial Frequency Human Visual System Image Function High Spatial Frequency Inverse Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shacked, R., Lischinski, D.: Automatic Lighting Design using a perceptual quality metric. In: Proceedings of EuroGraphics, vol. 20(3) (2001)Google Scholar
  2. 2.
    Schoeneman, C., Dorsey, J., Smits, B., Arvo, J., Greenburg, D.: Painting with light. In: Proceedings of SIGGRAPH, pp. 143–146 (1993)Google Scholar
  3. 3.
    Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Proceedings of SIGGRAPH, pp. 389–400 (1997)Google Scholar
  4. 4.
    Gross, M.: Visual Computing. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  5. 5.
    McNamara, A.: Comparing real and synthetic scenes using human judgments of lightness, Ph.D. Thesis, University of Bristol (2000)Google Scholar
  6. 6.
    Millerson, G.: Lighting for Television and Film. 3rd edn. Focal Press (2005)Google Scholar
  7. 7.
    Barzel, R.: Lighting Controls for Computer Cinematography. Journal of Graphics Tools 2(1), 1–20 (1997)Google Scholar
  8. 8.
    Spillmann, L., Werner, J.S.: Visual Perception the Neurophisiological Foundations. Academic, San Diego (1990)Google Scholar
  9. 9.
    Poulin, P., Fournier, A.: Lights from highlights and shadows. In: SI3D ’92. Proceedings of the 1992 Symposium on interactive 3D Graphics (Cambridge, Massachusetts, United States), pp. 31–38. ACM Press, New York, NY (1992)CrossRefGoogle Scholar
  10. 10.
    Reitsma, P.S.A., Pollard, N.S.: Perceptual metrics for character animation: sensitivity to errors in ballistic motion. ACM Transactions on Graph 22(3), 537–542 (2003)CrossRefGoogle Scholar
  11. 11.
    Farugia, J.P., Pollard, B.: A progressive rendering algorithm using an adaptive perceptually based image metric. In: Proceedings of Eurographics (2004)Google Scholar
  12. 12.
    Lee, C.H., Hao, X., Varshney, A.: Light Collages: Lighting Design for Effective Visualization. In: Proceedings of IEEE Visualization 2004, Austin (October 2004)Google Scholar
  13. 13.
    Gumhold, S.: Maximum entropy light source placement. In: Proceedings of IEEE Visualization (2002)Google Scholar
  14. 14.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: Proceedings of SIGGRAPH, pp. 197–206 (1990)Google Scholar
  15. 15.
    Hall, R.: Illumination and Color in Computer Generated Imagery. In: Monographs in Visual Communication, Springer, New York (1993)Google Scholar
  16. 16.
    Poulin, P., Ratib, K., Jacques, M.: Sketching Shadows and Highlights to Position Lights. In: Proceedings of Computer Graphics International (CGI’97) (1997)Google Scholar
  17. 17.
    Kawai, J.K., Painter, J.S., Cohen, M.F.: Radioptimization – Goal Based Rendering. In: Proceedings of SIGGRAPH‘93, pp. 147–154 (1993)Google Scholar
  18. 18.
    Jolivet, V., Plemenos, D., Poulingeas, P.: Inverse Direct Lighting with a Monte Carlo Method and Declarative Modelling. In: CG&GM ’2002 (2002)Google Scholar
  19. 19.
    Farrugia, J.P., Albin, S., Peroche, B.: A Perceptual Adaptive Image Metric for Computer Graphics. In: Proceedings of the International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG04) (2004)Google Scholar
  20. 20.
    Brajovich, V.: Brightness Perception, Dynamic Range and Noise: A Unifying Model for Adaptive Image Sensors. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’04), vol. 2, pp. 189–196 (June 2004)Google Scholar
  21. 21.
    Bruce, V., Patrick, R.G., Mark, A.G.: Visual Perception. Psychology Press (1997)Google Scholar
  22. 22.
    Haar, A.Z.: Theorie der orthogonalen Funktionensysteme. Math. Ann 69, 331–371 (1910)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Crandall, R.E.: Topics in advanced scientific computation. Spriger, Heidelberg (1996)zbMATHGoogle Scholar
  24. 24.
    Do, M.N., Vetterli, M.: Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance. IEEE Trans. Image Processing 11(2), 146–158 (2002)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Tian, Q., Sebe, N., Lew, M.S., Loupias, E., Huang, T.S.: Image retrieval using wavelet-based salient points. Journal of Electronic Imaging 10(4), 835–849 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hai Nam Ha
    • 1
  • Patrick Olivier
    • 1
  1. 1.Culture Lab, School of Computing Science, Newcastle Univeristy, Newcastle Upon Tyne, NE1 7RUUK

Personalised recommendations