Probabilistic Timed Behavior Trees

  • Robert Colvin
  • Lars Grunske
  • Kirsten Winter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4591)

Abstract

The Behavior Tree notation has been developed as a method for systematically and traceably capturing user requirements. In this paper we extend the notation with probabilistic behaviour, so that reliability, performance, and other dependability properties can be expressed. The semantics of probabilistic timed Behavior Trees is given by mapping them to probabilistic timed automata. We gain advantages for requirements capture using Behavior Trees by incorporating into the notation an existing elegant specification formalism (probabilistic timed automata) which has tool support for formal analysis of probabilistic user requirements.

Keywords

Behavior Trees probabilities timed automata model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)Google Scholar
  2. Beauquier, D.: On probabilistic timed automata. Theoretical Computer Science 292(1), 65–84 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. Birolini, A.: Reliability Engineering: Theory and Practice, 3rd edn. Springer, Heidelberg (1999)MATHGoogle Scholar
  4. Bengtsson, J., Wang, Y.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, Springer, Heidelberg (2004)Google Scholar
  5. Dromey, R.G.: From requirements to design: Formalizing the key steps. In: Int. Conference on Software Engineering and Formal Methods (SEFM 2003), pp. 2–13. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  6. Grunske, L., Lindsay, P., Winter, K., Yatapanage, N.: An automated failure mode and effect analysis based on high-level design specification with Behavior Trees. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 129–149. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. Grunske, L., Winter, K., Colvin, R.: Timed Behavior Trees and their Application to Verifying Real-time Systems. In: Proc. of 18th Australian Conference on Software Engineering (ASWEC 2007) (April 2007), (accepted for publication 2007)Google Scholar
  8. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)MATHCrossRefGoogle Scholar
  9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A probabilistic extension of UML Statecharts. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 355–374. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods in System Design 29, 33–78 (2006)MATHCrossRefGoogle Scholar
  12. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science 282(1), 101–150 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. Kwiatkowska, M.: Model checking for probability and time: From theory to practice (Invited Paper). In: Proc. 18th Annual IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 351–360. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  15. Lowe, G.: Probabilistic and prioritized models of timed CSP. Theoretical Computer Science 138(2), 315–352 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G. (eds.): Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. Wiley, Chichester (1995)MATHGoogle Scholar
  17. Priami, C.: Stochastic π calculus. The. Computer Journal 38(6), 578–589 (1995)CrossRefGoogle Scholar
  18. Troubitsyna, E.: Reliability assessment through probabilistic refinement. Nordic Journal of Computing 6(3), 320–342 (1999)MATHMathSciNetGoogle Scholar
  19. Wen, L., Dromey, R.G.: From requirements change to design change: A formal path. In: Int. Conference on Software Engineering and Formal Methods (SEFM 2004), pp. 104–113. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  20. Winter, K.: Formalising Behaviour Trees with CSP. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 148–167. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert Colvin
    • 1
  • Lars Grunske
    • 1
  • Kirsten Winter
    • 1
  1. 1.ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering, University of QueenslandAustralia

Personalised recommendations