Verifying CSP-OZ-DC Specifications with Complex Data Types and Timing Parameters

  • Johannes Faber
  • Swen Jacobs
  • Viorica Sofronie-Stokkermans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4591)

Abstract

We extend existing verification methods for CSP-OZ-DC to reason about real-time systems with complex data types and timing parameters. We show that important properties of systems can be encoded in well-behaved logical theories in which hierarchic reasoning is possible. Thus, testing invariants and bounded model checking can be reduced to checking satisfiability of ground formulae over a simple base theory. We illustrate the ideas by means of a simplified version of a case study from the European Train Control System standard.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. ERTMS User Group, UNISIG. ERTMS/ETCS System requirements specification. Version 2.2.2 (2002), http://www.aeif.org/ccm/default.asp
  3. Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the European Train Control System. In: FMCAD, pp. 76–77. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  4. Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with Evans equality. Information and Computation 204(10), 1453–1492 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST: a comparative reliability analysis of train radio communications. In: Workshop on Software and Performance, pp. 13–23. ACM Press, New York (2005)CrossRefGoogle Scholar
  7. Hoenicke, J., Maier, P.: Model-checking of specifications integrating processes, data and time. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, Springer, Heidelberg (2005)Google Scholar
  8. Hoenicke, J., Olderog, E.-R.: CSP-OZ-DC: A combination of specification techniques for processes, data and time. Nordic Journal of Computing 9(4), 301–334 (2003)MathSciNetGoogle Scholar
  9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  10. Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, University of Oldenburg, Germany (2006)Google Scholar
  11. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchic reasoning in the verification of complex systems. ENTCS (special issue dedicated to PDPAR 2006), 15 pages (to appear, 2007)Google Scholar
  12. Mahony, B.P., Dong, J.S.: Overview of the semantics of TCOZ. In: IFM, pp. 66–85. Springer, Heidelberg (1999)Google Scholar
  13. Meyer, R., Faber, J., Rybalchenko, A.: Model checking duration calculus: A practical approach. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 332–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)MATHCrossRefGoogle Scholar
  15. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  16. Smith, G.: The Object Z Specification Language. Kluwer Academic Publishers, Dordrecht (2000)MATHGoogle Scholar
  17. Smith, G.: An integration of real-time Object-Z and CSP for specifying concurrent real-time systems. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 267–285. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)Google Scholar
  19. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. Sühl, C.: An overview of the integrated formalism RT-Z. Formal Asp. Comput 13(2), 94–110 (2002)MATHCrossRefGoogle Scholar
  21. Trowitzsch, J., Zimmermann, A.: Using UML state machines and petri nets for the quantitative investigation of ETCS. In: VALUETOOLS, pp. 1–34. ACM Press, New York (2006)Google Scholar
  22. Zhou, C., Hansen, M.R.: Duration Calculus. Springer, Heidelberg (2004)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Johannes Faber
    • 1
  • Swen Jacobs
    • 2
  • Viorica Sofronie-Stokkermans
    • 2
  1. 1.Department of Computing Science, University of OldenburgGermany
  2. 2.Max-Planck-Institut Informatik, SaarbrückenGermany

Personalised recommendations