Inapproximability of Nondeterministic State and Transition Complexity Assuming P ≠ NP

  • Hermann Gruber
  • Markus Holzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4588)


Inapproximability results concerning minimization of nondeterministic finite automata relative to given deterministic finite automata were obtained only recently, modulo cryptographic assumptions [4]. Here we give upper and lower bounds on the approximability of this problem utilizing only the common assumption P ≠ NP, in the setup where the input is a finite language specified by a truth table. To this end, we derive an improved inapproximability result for the biclique edge cover problem. The obtained lower bounds on approximability can be sharpened in the case where the input is given as a deterministic finite automaton over a binary alphabet. This settles most of the open problems stated in [4]. Note that the biclique edge cover problem was recently studied by the authors as lower bound method for the nondeterministic state complexity of finite automata [5].


Bipartite Graph Boolean Function Performance Ratio Truth Table Transition Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amilhastre, J., Janssen, P., Vilarem, M.-C.: FA minimisation heuristics for a class of finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 1–12. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Champarnaud, J.-M., Pin, J.-E.: A maxmin problem on finite automata. Discrete Applied Mathematics 23, 91–96 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  4. 4.
    Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity is hard (extended abstract). In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gruber, H., Holzer, M.: On the average state and transition complexity of finite languages. Theoretical Computer Science, Special Issue: Selected papers of Descriptional Complexity of Formal Systems, Accepted for publication (2006)Google Scholar
  7. 7.
    Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite and unary languages. In: Proceedings of the 1st International Conference on Language and Automata Theory and Applications, Tarragona, Spain, LNCS, Springer, Heidelberg (accepted for publication, March 2007)Google Scholar
  8. 8.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22(6), 1117–1141 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kann, V.: Polynomially bounded minimization problems that are hard to approximate. Nordic Journal of Computing 1(3), 317–331 (1994)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Orlin, J.: Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae 80, 406–424 (1977)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Simon, H.U.: On approximate solutions for combinatorial optimization problems. SIAM Journal on Discrete Mathematics 3(2), 294–310 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Report TR05-100, Electronic Colloquium on Computational Complexity (ECCC) (September 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hermann Gruber
    • 1
  • Markus Holzer
    • 2
  1. 1.Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 MünchenGermany
  2. 2.Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei MünchenGermany

Personalised recommendations