2-Visibly Pushdown Automata

  • Dario Carotenuto
  • Aniello Murano
  • Adriano Peron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4588)

Abstract

Visibly Pushdown Automata (VPA) are a special case of pushdown machines where the stack operations are driven by the input. In this paper, we consider VPA with two stacks, namely 2-VPA. These automata introduce a useful model to effectively describe concurrent pushdown systems using a simple communication mechanism between stacks. We show that 2-VPA are strictly more expressive than VPA. Indeed, 2-VPA accept some context-sensitive languages that are not context-free and some context-free languages that are not accepted by any VPA. Nevertheless, the class of languages accepted by 2-VPA is closed under all boolean operations and determinizable in ExpTime, but does not preserve decidability of emptiness problem. By adding an ordering constraint on stacks (2-OVPA), decidability of emptiness can be recovered (preserving desirable closure properties) and solved in PTime. Using these properties along with the automata-theoretic approach, we prove that the model checking problem over 2-OVPA models against 2-OVPA specifications is ExpTime-complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–211. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 504–518. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Clarke, E.M., Emerson, E.A.: Design and verification of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  7. 7.
    Kupferman, O., Piterman, N., Vardi, M.: Pushdown specifications. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 262–277. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  9. 9.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent programs in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Symposium on Programming. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1981)Google Scholar
  10. 10.
    Sistla, A., Clarke, E.M., Francez, N., Gurevich, Y.: Can message buffers be axiomatized in linear temporal logic. Information and Control 63(1-2), 88–112 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Van Steen, M., Tanenbaum, A.S.: Distributed Systems: Principles and Paradigms. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  12. 12.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. of Computer and System Sciences 32(2), 182–221 (1986)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Walukiewicz, I.: Pushdown processes: Games and Model Checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dario Carotenuto
    • 1
  • Aniello Murano
    • 1
  • Adriano Peron
    • 1
  1. 1.Università degli Studi di Napoli “Federico II”, Via Cinthia, I-80126 NapoliItaly

Personalised recommendations