Characterizing Reduction Graphs for Gene Assembly in Ciliates

  • Robert Brijder
  • Hendrik Jan Hoogeboom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4588)

Abstract

The biological process of gene assembly has been modeled based on three types of string rewriting rules, called string pointer rules, defined on so-called legal strings. It has been shown that reduction graphs, graphs that are based on the notion of breakpoint graph in the theory of sorting by reversal, for legal strings provide valuable insights into the gene assembly process. We characterize which legal strings obtain the same reduction graph (up to isomorphism), and moreover we characterize which graphs are (isomorphic to) reduction graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavalcanti, A., Clarke, T., Landweber, L.: MDS_IES_DB: a database of macronuclear and micronuclear genes in spirotrichous ciliates. Nucleic Acids Res. 33, D396–D398 (2005)CrossRefGoogle Scholar
  2. 2.
    Brijder, R., Hoogeboom, H., Rozenberg, G.: Reducibility of gene patterns in ciliates using the breakpoint graph. Theor. Comput. Sci. 356, 26–45 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brijder, R., Hoogeboom, H., Rozenberg, G.: The breakpoint graph in ciliates. In: Berthold, M.R., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds.) CompLife 2005. LNCS (LNBI), vol. 3695, pp. 128–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46, 1–27 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Research in Computational Molecular Biology. LNCS (LNBI), vol. 3500, pp. 615–629. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Setubal, J., Meidanis, J.: Introduction to Computional Molecular Biology. PWS Publishing Company, London (1997)Google Scholar
  7. 7.
    Brijder, R., Hoogeboom, H., Muskulus, M.: Strategies of loop recombination in ciliates. LIACS Technical Report 2006-01, [arXiv:cs.LO/0601135] (2006)Google Scholar
  8. 8.
    Brijder, R., Hoogeboom, H., Muskulus, M.: Applicability of loop recombination in ciliates using the breakpoint graph. In: Berthold, M.R., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 97–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Brijder, R., Hoogeboom, H.: The fibers and range of reduction graphs in ciliates. LIACS Technical Report 2007-01, [arXiv:cs.LO/0702041] (2007)Google Scholar
  10. 10.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., Rozenberg, G.: Computation in Living Cells – Gene Assembly in Ciliates. Springer Verlag, Heidelberg (2004)MATHGoogle Scholar
  11. 11.
    Pevzner, P.: Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert Brijder
    • 1
  • Hendrik Jan Hoogeboom
    • 1
  1. 1.Leiden Institute of Advanced Computer Science, Universiteit Leiden, Niels Bohrweg 1, 2333 CA LeidenThe Netherlands

Personalised recommendations