State Isomorphism in Model Programs with Abstract Data Structures

  • Margus Veanes
  • Juhan Ernits
  • Colin Campbell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4574)


Modeling software features with model programs in C# is a way of formalizing software requirements that lends itself to automated analysis such as model-based testing. Unordered structures like sets and maps provide a useful abstract view of system state within a model program and greatly reduce the number of states that must be considered during analysis. Similarly, a technique called linearization reduces the number of states that must be considered by identifying isomorphic states, or states that are identical except for reserve element choice (such as the choice of object IDs for instances of classes). Unfortunately, linearization does not work on unordered structures such as sets. The problem turns into graph isomorphism, for which no polynomial time solution is known. In this paper we discuss the issue of state isomorphism in the presence of unordered structures and give a practical approach that overcomes some of the algorithmic limitations.


Model Program Model Check State Graph Edge Label Symmetry Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blass, A., Gurevich, Y.: Background, reserve, and gandy machines. In: Proceedings of the 14th Annual Conference of the EACSL on Computer Science Logic, London, UK, pp. 1–17. Springer-Verlag, Heidelberg (2000)Google Scholar
  2. 2.
    Bosnacki, D., Dams, D., Holenderski, L.: Symmetric spin. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software Verification. LNCS, vol. 1885, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java predicates. SIGSOFT Softw. Eng. Notes 27(4), 123–133 (2002)CrossRefGoogle Scholar
  4. 4.
    Campbell, C., Veanes, M.: State exploration with multiple state groupings. In: Beauquier, D., Börger, E., Slissenko, A. (eds.) 12th International Workshop on Abstract State Machines, ASM’05, pp. 119–130. Laboratory of Algorithms, Complexity and Logic, Créteil, France (March 2005)Google Scholar
  5. 5.
    Darga, P.T., Boyapati, C.: Efficient software model checking of data structure properties. In: OOPSLA ’06. Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications, pp. 363–382. ACM Press, New York, NY, USA (2006)CrossRefGoogle Scholar
  6. 6.
    Demartini, C., Iosif, R., Sisto, R.: dSPIN: A dynamic extension of SPIN. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) Theoretical and Practical Aspects of SPIN Model Checking. LNCS, vol. 1680, pp. 261–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Dill, D.L.: The Murphi verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Fortin, S.: The graph isomorphism problem (1996)Google Scholar
  9. 9.
    Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from abstract state machines. In: ISSTA’02. Software Engineering Notes, vol. 27, pp. 112–122. ACM Press, New York (2002)Google Scholar
  10. 10.
    Grieskamp, W., Tillmann, N., Schulte, W.: XRT — exploring runtime for.Net architecture and applications. Electr. Notes Theor. Comput. Sci. 144(3), 3–26 (2006)CrossRefGoogle Scholar
  11. 11.
    Gurevich, Y.: Specification and Validation Methods. In: Evolving Algebras 1993: Lipari Guide (chapter), pp. 9–36. Oxford University Press, Oxford (1995)Google Scholar
  12. 12.
    Iosif, R.: Symmetry reductions for model checking of concurrent dynamic software. STTT 6(4), 302–319 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ip, C.N., Dil, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9(1-2), 41–75 (1996)CrossRefGoogle Scholar
  14. 14.
    Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing and Analysis with C#. Cambridge University Press (Forthcoming 2007)Google Scholar
  15. 15.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Messmer, B.T.: Efficient graph matching algorithms (1995)Google Scholar
  18. 18.
    Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking. ACM Comput. Surv. 38(3), 8 (2006)CrossRefGoogle Scholar
  19. 19.
    Musuvathi, M., Dill, D.L.: An incremental heap canonicalization algorithm. In: Godefroid, P. (ed.) Model Checking Software. LNCS, vol. 3639, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Robby, M., Dwyer, B., Hatcliff, J.: Domain-specific model checking using the bogor framework. In: ASE ’06. Proceedings of the 21st IEEE International Conference on Automated Software Engineering (ASE’06), pp. 369–370. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  21. 21.
  22. 22.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Elsevier, Amsterdam (2006)Google Scholar
  24. 24.
    Veanes, M., Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.: Model-based testing of object-oriented reactive systems with Spec Explorer, Tech. Rep. MSR-TR-2005-59, Microsoft Research. Preliminary version of a book chapter in the forthcoming text book Formal Methods and Testing (2005)Google Scholar
  25. 25.
    Veanes, M., Campbell, C., Schulte, W.: Composition of model programs. In: The current proceedings (2007)Google Scholar
  26. 26.
    Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs. In: ESEC/FSE-13. Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering, pp. 273–282. ACM Press, New York, NY, USA (2005)CrossRefGoogle Scholar
  27. 27.
    Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Margus Veanes
    • 1
  • Juhan Ernits
    • 2
  • Colin Campbell
    • 3
  1. 1.Microsoft Research, Redmond, WAUSA
  2. 2.Inst. of Cybernetics / Dept. of Comp. Sci., Tallinn University of Technology, TallinnEstonia
  3. 3.Modeled Computation LLC, Seattle, WAUSA

Personalised recommendations