Advertisement

iJADE InfoSeeker: On Using Intelligent Context-Aware Agents for Retrieving and Analyzing Chinese Web Articles

  • Edward H. Y. Lim
  • Raymond S. T. Lee
Part of the Studies in Computational Intelligence book series (SCI, volume 72)

In this chapter, we presents iJADE InfoSeeker, an intelligent context-aware agents system that is designed to help users find, retrieve, and analyze news article from the Internet and then present the content in a semantic web. We present the advantages of using multiple intelligent agents to mine news articles on the web, the benefits of using ontologies to analyze the semantics of Chinese text, and also the advantages of using a semantic web to organize information semantically. iJADE InfoSeeker also demonstrates the advantages of using ontologies to identify topics. We use a Chinese document corpus to evaluate iJADE InfoSeeker and the testing result was compared to other approaches. It was found that the accuracy of identifying the topics of Chinese web articles is nearly 87%. It demonstrated a fast processing speed of less than one second per article. It also organizes content flexibly and understands knowledge accurately, unlike traditional text classification systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, R. S. T. Fuzzy-neuro approach to agent applications: From the AI perspective to modern ontology. Springer, 2005.Google Scholar
  2. 2.
    iJADK - intelligent Java Agent Development Kit, http://www.ijadk.com/.
  3. 3.
    Lee, R. S. T. & Liu, J.N.K. A Web-based Mining Agent based on Intelligent Java Agent Development Environment (iJADE) on Internet Shopping, 2001.Google Scholar
  4. 4.
    Jennings, N. R. & Wooldridge, M. Applications of Intelligent Agents, Agent technology: Foundations, applications, and markets. pp. 3-28, 1998.Google Scholar
  5. 5.
    Change, G., Healey, M. J. & McHugh, A. M. Mining the World Wide Web: An information search approach. Kluwer Academic Publishers, 2001.Google Scholar
  6. 6.
    Franke, J., Nakaeizadeh, G. & Renz, I. Text mining: Theoretical aspects and applications. Physica-Verlag, 2003.Google Scholar
  7. 7.
    Li, Y. & Zhong, N. Capturing Evolving Patterns for Ontology-based Web Mining. Proceedings. IEEE/WIC/ACM International Conference on 20-24 Sept. WI 2004. pp. 256-263, 2004.Google Scholar
  8. 8.
    Widyantoro, D. H. & Yen, J. Relevant data expansion for learning concept drift from sparsely labeled data. IEEE Transactions on Knowledge and Data Engineering vol.17, no.3 pp. 401-412, 2005.Google Scholar
  9. 9.
    Joachims, T. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization, 2002.Google Scholar
  10. 10.
    Aggarwal, C. C., Gates, S. C. & Yu, P. S. On using partial supervision for text categorization. IEEE Transactions on Knowledge and data Engineering, vol. 16, no. 2 pp. 245-255, 2004.CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Maedche, A. Ontology learning for the semantic Web. Kluwer Academic Publishers, 2002.Google Scholar
  13. 13.
    Patel, M. & Duke, M. Knowloedge Discovery in an Agents Environment. ESWS 2004, LNCS 3053 pp. 121-136, 2004.Google Scholar
  14. 14.
  15. 15.
    OpenCYC - Formalized Common Knowledge, http://www.opencyc.org/.
  16. 16.
    Fellbaum, C. WordNet: an electronic lexical database. MIT Press, 1998.Google Scholar
  17. 17.
    HowNet - Computation of Meaning, http://www.keenage.com/.
  18. 18.
    Guan, Y., Wang, X. L. & Kong, X. Y. Quantifying semantic similarity of Chinese words from HowNet. Proceedings of the First international Conference on Machines Learning and Cybernetics, Beijing, 4-5 Nov 2002. Google Scholar
  19. 19.
    Gan, K. W. & Wong, P. W. Annotating information structures in Chinese text using HowNet, 2004.Google Scholar
  20. 20.
    Davies, J. & Fensel, D. Towards the semantic Web: ontology-driven knowledge management. Wiley, 2003.Google Scholar
  21. 21.
    Patel, C. & Superkar, K. E. OntoKhoj: A Semantic Web Portal for Onto- logy Searching, Ranking and Classification, 2005.Google Scholar
  22. 22.
    W3C Semantic Web, http://www.w3.org/2001/sw/.
  23. 23.
    W3C Resource Description Framework (RDF), http://www.w3.org/RDF/.
  24. 24.
    Handschuh, S. & Staab, S. Annotation for the semantic web.: IOS Press, 2003.Google Scholar
  25. 25.
    Schreiber, A. T., Dubbeldam, B. & Wielemaker, J. Ontology-based photo annotation. IEEE Intelligent Systems May/June 2001, pp. 66-74, 2004.Google Scholar
  26. 26.
    Soo, V. W., Lee, C. Y. & Li, C. C. Automated semantic annotation and retrieval based on sharable ontology and case-based learning techniques. Proceedings of the 2003 Joint Conference on Digital Libraries, 2003.Google Scholar
  27. 27.
    Handschuh, S. & Staab, S. CREAM - CREAting Metadata for the semantic web. Computer Networks. 42, pp. 579-598, 2003.zbMATHCrossRefGoogle Scholar
  28. 28.
    Hyvonen, E., Saarela, S. & Viljanen, K. Application Ontology Techniques to View-Based Semantic Search and Browsing. ESWS 2004, pp. 215-220, 2004.Google Scholar
  29. 29.
    Gao, M., Liu, C. & Chenf, C. An Ontology Search Engine Based on Semantic Analysis. Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05), 2005.Google Scholar
  30. 30.
  31. 31.
  32. 32.
    Clifton, C., Cooley, R. & Rennie, J. Data mining for topic identification in a text corpus. IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 8 pp. 949-964, 2004.CrossRefGoogle Scholar
  33. 33.
    Adomavicius, G. & Tuzhilin, A. Toward the next generation of recommender systems: A syrvery of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering vol. 17, no. 6 pp. 734-749, 2005.CrossRefGoogle Scholar
  34. 34.
    Li, Y. & Zhong, N. Capturing evolving patterns for ontology-based web mining. Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence 2003. Google Scholar
  35. 35.
    Bontas, E. P. & Schlangen, D. Ontology engineering for the semantic annotation of medical data. Proc. of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05), 2005.Google Scholar
  36. 36.
    Lin, S. H., Chen, M. S. & Ho, J. M. Intelligent internet document organiza- tion and retrieval. IEEE Transactions on Knowledge and Data Engineering (SCI), vol. 14, no. 3, 2004.Google Scholar
  37. 37.
    Xi, C. Z. & Ibrahim, T. I. A Keyword-based semantic prefetching approach in internet news services. IEEE Transactions on Knowledge and data Engineering, vol. 16, no. 5 pp. 601-611, 2004.CrossRefGoogle Scholar
  38. 38.
    Lu, J., Rahman, U. & Yao, S. An intelligent search agent system for semantic information retrieval on the internet. ICITA 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Edward H. Y. Lim
    • 1
  • Raymond S. T. Lee
    • 1
  1. 1.Department of ComputingThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations