Organization and Function of Complex Cortical Networks

  • Claus C. Hilgetag
  • Marcus Kaiser
Part of the Understanding Complex Systems book series (UCS)


This review gives a general overview of the organization of complex brain networks at the systems level, in particular in the cerebral cortex of the cat brain. We identify fundamental parameters of the structural organization of cortical networks, illustrate how these characteristics may arise during brain development and how they give rise to robustness of the cortical networks against damage. Moreover, we review potential implications of the structural organization of cortical networks for brain function.


Functional Connectivity Preferential Attachment Structural Connectivity Cortical Network Edge Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braendgaard, H., Evans, S.M., Howard, C.V., Gundersen, H.J.: The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. J. Microsc. 157(Pt 3) (1990) 285–304.Google Scholar
  2. 2.
    Braitenberg, V., Schüz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity. 2nd edn. Springer (1998).Google Scholar
  3. 3.
    Binzegger, T., Douglas, R.J., Martin, K.A.C.: A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24 (2004) 8441–8453.CrossRefGoogle Scholar
  4. 4.
    Young, M.P.: The organization of neural systems in the primate cerebral cortex. Phil. Trans. R. Soc. 252 (1993) 13–18.Google Scholar
  5. 5.
    Binzegger, T., Douglas, R.J., Martin, K.A.C.: Axons in cat visual cortex are topologically self-similar. Cereb Cortex 15(2) (2005) 152–165.CrossRefGoogle Scholar
  6. 6.
    Silberberg, G., Grillner, S., LeBeau, F.E.N., Maex, R., Markram, H.: Synaptic pathways in neural microcircuits. Trends. Neurosci. 28(10) (2005) 541–551.CrossRefGoogle Scholar
  7. 7.
    Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C.: Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5(10) (2004) 793–807.CrossRefGoogle Scholar
  8. 8.
    Schubert, D., Kotter, R., Luhmann, H.J., Staiger, J.F.: Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cereb. Cortex 16(2) (2006) 223–236.CrossRefGoogle Scholar
  9. 9.
    Thomson, A.M., Morris, O.T.: Selectivity in the inter-laminar connections made by neocortical neurones. J. Neurocytol. 31(3–5) (2002) 239–246.CrossRefGoogle Scholar
  10. 10.
    Zeki, S., Shipp, S.: The functional logic of cortical connections. Nature 335(6188) (1988) 311–317.CrossRefADSGoogle Scholar
  11. 11.
    Van Essen, D.C., Anderson, C.H., Felleman, D.J.: Information processing in the primate visual system: an integrated systems perspective. Science 255(5043) (1992) 419–423.CrossRefADSGoogle Scholar
  12. 12.
    Young, M.P.: Objective analysis of the topological organization of the primate cortical visual system. Nature 358(6382) (1992) 152–155.CrossRefADSGoogle Scholar
  13. 13.
    Crick, F., Koch, C.: Are we aware of neural activity in primary visual cortex? Nature 375(6527) (1995) 121–123.CrossRefADSGoogle Scholar
  14. 14.
    Scannell, J., Blakemore, C., Young, M.: Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15(2) (1995) 1463–1483.Google Scholar
  15. 15.
    Friston, K.J.: Models of brain function in neuroimaging. Annu. Rev. Psychol. 56 (2005) 57–87.CrossRefGoogle Scholar
  16. 16.
    Sporns, O., Tononi, G., Edelman, G.M.: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10 (2000) 127–141.CrossRefGoogle Scholar
  17. 17.
    Stephan, K.E., Zilles, K., Kotter, R.: Coordinate-independent mapping of structural and functional data by objective relational transformation ORT. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355(1393) (2000) 37–54.CrossRefGoogle Scholar
  18. 18.
    Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8 (2004) 418–425.CrossRefGoogle Scholar
  19. 19.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2 (1994) 56–78.CrossRefGoogle Scholar
  20. 20.
    Horwitz, B.: The elusive concept of brain connectivity. Neuroimage 19(2 Pt 1) (2003) 466–470.CrossRefGoogle Scholar
  21. 21.
    Keinan, A., Sandbank, B., Hilgetag, C.C., Meilijson, I., Ruppin, E.: Fair attribution of functional contribution in artificial and biological networks. Neural Comp. 16 (2004) 1887–1915.zbMATHCrossRefGoogle Scholar
  22. 22.
    Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Network 16(1) (2005) 35–54.CrossRefGoogle Scholar
  23. 23.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchonization and large-scale integration. Nature Rev. Neurosci. 2 (2001) 229–239.CrossRefGoogle Scholar
  24. 24.
    Büchel, C., Friston, K.J.: Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex. 7 (1997) 768–778.CrossRefGoogle Scholar
  25. 25.
    Bressler, S.L.: Large-scale cortical networks and cognition. Brain Res. Brain Res. Rev. 20(3) (1995) 288–304.CrossRefGoogle Scholar
  26. 26.
    Buchel, C., Friston, K.J.: Dynamic changes in effective connectivity characterized by variable parameter regression and Kalman filtering. Hum. Brain. Mapp. 6(5–6) (1998) 403–408 Clinical Trial.CrossRefGoogle Scholar
  27. 27.
    Buchel, C., Coull, J.T., Friston, K.J.: The predictive value of changes in effective connectivity for human learning. Science 283(5407) (1999) 1538–1541.CrossRefADSGoogle Scholar
  28. 28.
    Passingham, R.E., Stephan, K.E., Kötter, R.: The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3 (2002) 606–616.Google Scholar
  29. 29.
    Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing dynamics of neuronal groups. Cereb. Cortex 14 (2004) 933–944.CrossRefGoogle Scholar
  30. 30.
    Hilgetag, C.C., Burns, G.A.P.C., O’Neill, M.A., Scannell, J.W., Young, M.P.: Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Phil. Trans. R. Soc. Lond. B 355 (2000) 91–110.CrossRefGoogle Scholar
  31. 31.
    Scannell, J.W., Burns, G.A., Hilgetag, C.C., O’Neil, M.A., Young, M.P.: The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9(3) (1999) 277–299.CrossRefGoogle Scholar
  32. 32.
    Crick, F., Jones, E.: Backwardness of human neuroanatomy. Nature 361(6408) (1993) 109–110.CrossRefADSGoogle Scholar
  33. 33.
    Young, M.P., Scannell, J.W., O’Neill, M.A., Hilgetag, C.C., Burns, G., Blakemore, C.: Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Phil. Trans. R. Soc. 348 (1995) 281–308.CrossRefGoogle Scholar
  34. 34.
    Hilgetag, C.C., O’Neill, M.A., Young, M.P.: Indeterminancy of the visual cortex. Science 271(5250) (1996) 776–777.CrossRefADSGoogle Scholar
  35. 35.
    Kaiser, M., Hilgetag, C.C.: Modelling the development of cortical networks. Neurocomputing 58–60 (2004) 297–302.CrossRefGoogle Scholar
  36. 36.
    Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS. Comput. Biol. (2006) e95.Google Scholar
  37. 37.
    Cherniak, C.: Component placement optimization in the brain. J. Neurosci. 14(4) (1994) 2418–2427.Google Scholar
  38. 38.
    Masuda, N., Aihara, K.: Global and local synchrony of coupled neurons in small-world networks. Biol. Cybern. 90 (2004) 302–309.zbMATHCrossRefGoogle Scholar
  39. 39.
    von der Malsburg, C.: The correlation theory of brain function. Technical report, Max-Planck-Institute for Biophysical Chemistry (1981).Google Scholar
  40. 40.
    Laughlin, S.B., Sejnowski, T.J.: Communication in neuronal networks. Science 301 (2003) 1870–1874.CrossRefADSGoogle Scholar
  41. 41.
    von Neumann, J.: The Computer and the Brain. Yale University Press (1958).Google Scholar
  42. 42.
    Kötter, R., Stephan, K.E.: Network participation indices: characterizing component roles for information processing in neural networks. Neural Networks 16 (2003) 1261–1275.CrossRefGoogle Scholar
  43. 43.
    Hilgetag, C.C., Kötter, R., Stephan, K.E., Sporns, O.: Computational methods for the analysis of brain connectivity. In: Computational Neuroanatomy. Humana Press, Totowa, NJ (2002) 295–335.Google Scholar
  44. 44.
    Sporns, O.: Graph theory methods for the analysis of neural connectivity patterns. In: Neuroscience Databases. Kluwer Academic, Dordrecht (2002) 169–183.Google Scholar
  45. 45.
    da Fontura Costa, L., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: A survey of measurements. cond-mat 0505185 (2005) v3.Google Scholar
  46. 46.
    Ungerleider, L., Mischkin, M.: Two cortical visual systems. In Ingle, M., Goodale, M., Mansfield, R., eds.: The New Cognitive Neurosciences. MIT Press, Cambridge, MA (1982).Google Scholar
  47. 47.
    Petroni, F., Panzeri, S., Hilgetag, C.C., Kötter, R., Young, M.P.: Simultaneity of responses in a hierarchical visual network. Neuroreport 12 (2001) 2753–2759.CrossRefGoogle Scholar
  48. 48.
    Felleman, D.J., van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1 (1991) 1–47.CrossRefGoogle Scholar
  49. 49.
    Hilgetag, C.C., O’Neill, M.A., Young, M.P.: Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. Ser. B 355 (2000) 71–89.CrossRefGoogle Scholar
  50. 50.
    Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2 (2004) 145–162.CrossRefGoogle Scholar
  51. 51.
    Hilgetag, C.C., Kaiser, M.: Clustered organisation of cortical connectivity. Neuroinformatics 2 (2004) 353–360.CrossRefGoogle Scholar
  52. 52.
    Hellwig, B.: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82 (2000) 111–121.CrossRefGoogle Scholar
  53. 53.
    Schuz, A., Chaimow, D., Liewald, D., Dortenman, M.: Quantitative aspects of corticocortical connections: a tracer study in the mouse. Cereb. Cortex 16 (2005) 1474–1486.CrossRefGoogle Scholar
  54. 54.
    Schuez, A., Braitenberg, V.: The human cortical white matter: quantitative aspects of corticocortical long-range connectivity. In Schuez, A., Miller, R., eds.: Cortical areas: unity and diversity. CRC Press, London (2002) 377–385.CrossRefGoogle Scholar
  55. 55.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999) 509–512.CrossRefMathSciNetGoogle Scholar
  56. 56.
    Barabási, A.L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Physica A 3–4 (2001) 559–564.CrossRefADSGoogle Scholar
  57. 57.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297 (2002) 1551–1555.CrossRefADSGoogle Scholar
  58. 58.
    Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9) (1988) 1617–1622.CrossRefGoogle Scholar
  59. 59.
    Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1990).zbMATHGoogle Scholar
  60. 60.
    Kaiser, M., Hilgetag, C.C.: Spatial growth of real-world networks. Phys. Rev. E 69 (2004) 036103.CrossRefADSGoogle Scholar
  61. 61.
    Kaiser, M., Hilgetag, C.C.: Edge vulnerability in neural and metabolic networks. Biol. Cybern. 90 (2004) 311–317.zbMATHCrossRefGoogle Scholar
  62. 62.
    Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y., Taya, C., Karasuyama, H., Su, M.S., Rakic, P., Flavell, R.A.: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase. Cell 94(3) (1998) 325–337.CrossRefGoogle Scholar
  63. 63.
    Valverde, S., Cancho, R.F., Solé, R.V.: Scale-free networks from optimal design. Europhys. Lett. 60(4) (2002) 512–517.CrossRefADSGoogle Scholar
  64. 64.
    Sur, M., Leamey, C.A.: Development and plasticity of cortical areas and networks. Nature Rev. Neurosci. 2 (2001) 251–262.CrossRefGoogle Scholar
  65. 65.
    Rakic, P.: Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nature Rev. Neurosci. 3 (2002) 65–71.CrossRefGoogle Scholar
  66. 66.
    Spear, P., Tong, L., McCall, M.: Functional influence of areas 17, 18 and 19 on lateral suprasylvian cortex in kittens and adult cats: implications for compensation following early visual cortex damage. Brain Res. 447(1) (1988) 79–91.CrossRefGoogle Scholar
  67. 67.
    Stromswold, K.: The cognitive neuroscience of language acquisition. In Gazzaniga, M., ed.: The New Cognitive Neurosciences. 2nd edn. MIT Press, Cambridge, MA (2000) 909–932.Google Scholar
  68. 68.
    Young, M.P., Hilgetag, C.C., Scannell, J.W.: On imputing function to structure from the behavioural effects of brain lesions. Phil. Trans. R. Soc. 355 (2000) 147–161.CrossRefGoogle Scholar
  69. 69.
    Traufetter, G.: Leben ohne links. Spiegel Special (4) (2003) 30.Google Scholar
  70. 70.
    Pakkenberg, B., Moller, A., Gundersen, H.J., Mouritzen, D.A., Pakkenberg, H.: The absolute number of nerve cells in substantia nigra in normal subjects and in patients with parkinson’s disease estimated with an unbiased stereological method. J. Neurol. Neurosurg. Psychiatry 54(1) (1991) 30–33.CrossRefGoogle Scholar
  71. 71.
    Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406 (2000) 378–382.CrossRefADSGoogle Scholar
  72. 72.
    Diestel, R.: Graph Theory. Springer, New York (1997).zbMATHGoogle Scholar
  73. 73.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393 (1998) 440–442.CrossRefADSGoogle Scholar
  74. 74.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12) (2002) 7821–7826.zbMATHCrossRefADSMathSciNetGoogle Scholar
  75. 75.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65 (2002) 056109.CrossRefADSGoogle Scholar
  76. 76.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6) (1973) 1360–1380.CrossRefGoogle Scholar
  77. 77.
    Stephan, K.E., Hilgetag, C.C., Burns, G.A.P.C., O’Neill, M.A., Young, M.P., Kötter, R.: Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil. Trans. R. Soc. 355 (2000) 111–126.CrossRefGoogle Scholar
  78. 78.
    Kötter, R., Sommer, F.T.: Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil. Trans. Roy. Soc. Lond. Ser. B 355 (2000) 127–134.CrossRefGoogle Scholar
  79. 79.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 (2006) 63–72.CrossRefGoogle Scholar
  80. 80.
    Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15(9) (2005) 1332–1342.CrossRefGoogle Scholar
  81. 81.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298 (2002) 824–827.CrossRefADSGoogle Scholar
  82. 82.
    Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol. 2 (2004) 1910–1918.CrossRefGoogle Scholar
  83. 83.
    Buzsaki, G., Geisler, C., Henze, D.A., Wang, X.J.: Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27(4) (2004) 186–193.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Claus C. Hilgetag
    • 1
  • Marcus Kaiser
    • 2
  1. 1.International University Bremen, School of Engineering and ScienceBremenGermany
  2. 2.School of Computing Science, Newcastle UniversityNewcastle upon TyneUnited Kingdom

Personalised recommendations