GART: The Gesture and Activity Recognition Toolkit

  • Kent Lyons
  • Helene Brashear
  • Tracy Westeyn
  • Jung Soo Kim
  • Thad Starner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4552)

Abstract

The Gesture and Activity Recognition Toolit (GART) is a user interface toolkit designed to enable the development of gesture-based applications. GART provides an abstraction to machine learning algorithms suitable for modeling and recognizing different types of gestures. The toolkit also provides support for the data collection and the training process. In this paper, we present GART and its machine learning abstractions. Furthermore, we detail the components of the toolkit and present two example gesture recognition applications.

Keywords

Gesture recognition user interface toolkit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg, L.: Weka - a machine learning workbench for data mining. In: Maimon, O., Rokach, L. (eds.): The Data Mining and Knowledge Discovery Handbook, pp. 1305–1314. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Grossman, T., Wigdor, D., Balakrishnan, R.: Multi-finger gestural interaction with 3d volumetric displays. In: UIST 2004. Proceedings of the 17th annual ACM symposium on User interface software and technology, pp. 61–70. ACM Press, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Hinckley, K., Pierce, J., Sinclair, M., Horvitz, E.: Sensing techniques for mobile interaction. In: UIST 2000. Proceedings of the 13th annual ACM symposium on User interface software and technology, pp. 91–100. ACM Press, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Kristensson, P.O., Zhai, S.: Shark2: a large vocabulary shorthand writing system for pen-based computers. In: UIST 2004. Proceedings of the 17th annual ACM symposium on User interface software and technology, pp. 43–52. ACM Press, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Malik, S., Ranjan, A., Balakrishnan, R.: Interacting with large displays from a distance with vision-tracked multi-finger gestural input. In: UIST 2005. Proceedings of the 18th annual ACM symposium on User interface software and technology, pp. 43–52. ACM Press, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Starner, T., Weaver, J., Pentland, A.: Real-time American Sign Language recognition using desk and wearable computer-based video. IEEE Transactions Pattern Analysis and Machine Intelligence 20(12) (December 1998)Google Scholar
  7. 7.
    Vogler, C., Metaxas, D.: ASL recognition based on a coupling between HMMs and 3D motion analysis. In: ICCV, Bombay (1998)Google Scholar
  8. 8.
    Want, R., Schilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis, J.R., Weiser, M.: An overview of the PARCTAB ubiquitous computing experiment. IEEE Personal Communications 2(6), 28–33 (1995)CrossRefGoogle Scholar
  9. 9.
    Westeyn, T., Brashear, H., Atrash, A., Starner, T.: Georgia tech gesture toolkit: supporting experiments in gesture recognition. In: ICMI 2003. Proceedings of the 5th International Conference on Multimodal Interfaces, pp. 85–92. ACM, New York (2003)CrossRefGoogle Scholar
  10. 10.
    Westeyn, T., Vadas, K., Bian, X., Starner, T., Abowd, G.D.: Recognizing mimicked autistic self-stimulatory behaviors using hmms. In: ISWC 2005, pp. 164–169. IEEE Computer Society, Washington (2005)Google Scholar
  11. 11.
    Wobbrock, J.O., Myers, B.A., Kembel, J.A.: Edgewrite: a stylus-based text entry method designed for high accuracy and stability of motion. In: UIST 2003. Proceedings of the 16th annual ACM symposium on User interface software and technology, pp. 61–70. ACM Press, New York (2003)CrossRefGoogle Scholar
  12. 12.
    Wu, M., Balakrishnan, R.: Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In: UIST 2003. Proceedings of the 16th annual ACM symposium on User interf ce software and technology, pp. 193–202. ACM Press, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.3) Cambridge University Engineering Department (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kent Lyons
    • 1
  • Helene Brashear
    • 1
  • Tracy Westeyn
    • 1
  • Jung Soo Kim
    • 1
  • Thad Starner
    • 1
  1. 1.College of Computing and GVU Center, Georgia Institute of Technology, Atlanta, GA 30332-0280USA

Personalised recommendations