Advertisement

Proof Theory for First Order Łukasiewicz Logic

  • Matthias Baaz
  • George Metcalfe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4548)

Abstract

An approximate Herbrand theorem is proved and used to establish Skolemization for first-order Łukasiewicz logic. Proof systems are then defined in the framework of hypersequents. In particular, extending a hypersequent calculus for propositional Łukasiewicz logic with usual Gentzen quantifier rules gives a calculus that is complete with respect to interpretations in safe MV-algebras, but lacks cut-elimination. Adding an infinitary rule to the cut-free version of this calculus gives a system that is complete for the full logic. Finally, a cut-free calculus with finitary rules is obtained for the one-variable fragment by relaxing the eigenvariable condition for quantifier rules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A.: A constructive analysis of RM. Journal of Symbolic Logic 52(4), 939–951 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for Prenex Gödel logic and its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Belluce, L.P.: Further results on infinite valued predicate logic. Journal of Symbolic Logic 29, 69–78 (1964)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Belluce, L.P., Chang, C.C.: A weak completeness theorem for infinite valued first order logic. Journal of Symbolic Logic 28, 43–50 (1963)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ciabattoni, A., Metcalfe, G.: Bounded Łukasiewicz logics. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (1999)Google Scholar
  8. 8.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  9. 9.
    Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 23(2–4), 161–178 (2006)Google Scholar
  10. 10.
    Hay, L.S.: Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28(1), 77–86 (1963)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Łukasiewicz, J.: Selected Writings. North-Holland, Edited by L. Borowski (1970)Google Scholar
  12. 12.
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III, 23, Reprinted and translated in (1930)Google Scholar
  13. 13.
    Malinowski, G.: Many-Valued Logics. Oxford Logic Guides, vol. 25. Oxford University Press, New York (1993)MATHGoogle Scholar
  14. 14.
    McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Transactions on Computational Logic 6(3), 578–613 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mostowski, A.: Axiomatizability of some many valued predicate calculi. Fundamentica Mathematica 50, 165–190 (1961)MATHMathSciNetGoogle Scholar
  17. 17.
    Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65, 15–63 (1986)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Novak, V.: On the Hilbert-Ackermann theorem in fuzzy logic. Acta. Mathematica et Informatica Universitatis Ostraviensis 4, 57–74 (1996)MATHMathSciNetGoogle Scholar
  20. 20.
    Ragaz, M.E.: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik. PhD thesis, ETH Zürich (1981)Google Scholar
  21. 21.
    Rutledge, J.D.: A preliminary investigation of the infinitely many-valued predicate calculus. PhD thesis, Cornell University, Ithaca (1959)Google Scholar
  22. 22.
    Scarpellini, B.: Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz. Journal of Symbolic Logic 27(2), 159–170 (1962)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)MATHMathSciNetGoogle Scholar
  24. 24.
    Vojtás, P.: Fuzzy logic programming. Fuzzy Sets. and Systems 124, 361–370 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Matthias Baaz
    • 1
  • George Metcalfe
    • 2
  1. 1.Institute of Discrete Mathematics and Geometry, Technical University Vienna, Wiedner Hauptstrasse 8-10, A-1040 WienAustria
  2. 2.Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville TN 37240USA

Personalised recommendations