Advertisement

Abstract

Axiom pinpointing has been introduced in description logics (DLs) to help the user to understand the reasons why consequences hold and to remove unwanted consequences by computing minimal (maximal) subsets of the knowledge base that have (do not have) the consequence in question. The pinpointing algorithms described in the DL literature are obtained as extensions of the standard tableau-based reasoning algorithms for computing consequences from DL knowledge bases. Although these extensions are based on similar ideas, they are all introduced for a particular tableau-based algorithm for a particular DL.

The purpose of this paper is to develop a general approach for extending a tableau-based algorithm to a pinpointing algorithm. This approach is based on a general definition of “tableaux algorithms,” which captures many of the known tableau-based algorithms employed in DLs, but also other kinds of reasoning procedures.

Keywords

Description Logic Horn Clause Rule Application Valuation Versus Fresh Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of IJCAI 2005, pp. 364–369. Morgan Kaufmann, Los Alamitos (2005)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages. Technical Report RR-91-10, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) (1991)Google Scholar
  4. 4.
    Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics. Fundamenta Informaticae 57(2-4), 247–279 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. of Automated Reasoning 14, 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. LTCS-Report 07-01, TU Dresden, Germany (2007), http://lat.inf.tu-dresden.de/research/reports.html
  7. 7.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practical Aspects of Declarative Languages. LNCS, vol. 3350, Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Davydov, G., Davydova, I., Büning, H.K.: An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. Ann.of Mathematics and Artificial Intelligence 23(3-4), 229–245 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-completeness. W.H. Freeman and Company, San Francisco (CA, USA) (1979)zbMATHGoogle Scholar
  11. 11.
    Haarslev, V., Möller, R.: RACER system description. In Proc. of IJCAR 2001 (2001)Google Scholar
  12. 12.
    Hollunder, B.: Hybrid inferences in KL-ONE-based knowledge representation systems. In: Proc. of German Workshop on AI, pp. 38–47. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction. In: Proc. of KR 1998, pp. 636–647 (1998)Google Scholar
  14. 14.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)Google Scholar
  15. 15.
    Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: Swoop: A Web ontology editing browser. J. of Web Semantics 4(2) (2005)Google Scholar
  16. 16.
    Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plugin: An open development environment for semantic web applications. In: Proceedings of the Third Int. Semantic Web Conf, Hiroshima, Japan (2004)Google Scholar
  17. 17.
    Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminologies for the description logic \(\mathcal{{ALC}}\). In: Proc. of AAAI 2006, AAAI Press/The MIT Press, Cambridge (2006)Google Scholar
  19. 19.
    Oberle, D., Volz, R., Motik, B., Staab, S.: An extensible ontology software environment. In: Handbook on Ontologies, International Handbooks on Information Systems, pp. 311–333. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proc. of WWW 2005, pp. 633–640. ACM, New York (2005)CrossRefGoogle Scholar
  21. 21.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schlobach, S.: Diagnosing terminologies. In: Proc. of AAAI 2005, pp. 670-675. AAAI Press/The MIT Press, Cambridge (2005) Google Scholar
  23. 23.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proc. of IJCAI 2003, Acapulco, Mexico, pp. 355–362. Morgan Kaufmann, San Francisco, Los Alamitos (2003)Google Scholar
  24. 24.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of DL 2004, pp. 212–213 (2004)Google Scholar
  26. 26.
    Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference terminology for health care. J. of the American Medical Informatics Association, Fall Symposium Supplement, pp. 640–644 (1997)Google Scholar
  27. 27.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proc. of DATE 2003, pp. 10880–10885. IEEE Computer Society Press, Washington (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Franz Baader
    • 1
  • Rafael Peñaloza
    • 2
  1. 1.Theoretical Computer Science, TU DresdenGermany
  2. 2.Intelligent Systems, University of LeipzigGermany

Personalised recommendations