Differential Dynamic Logic for Verifying Parametric Hybrid Systems

  • André Platzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4548)


We introduce a first-order dynamic logic for reasoning about systems with discrete and continuous state transitions, and we present a sequent calculus for this logic. As a uniform model, our logic supports hybrid programs with discrete and differential actions. For handling real arithmetic during proofs, we lift quantifier elimination to dynamic logic. To obtain a modular combination, we use side deductions for verifying interacting dynamics. With this, our logic supports deductive verification of hybrid systems with symbolic parameters and first-order definable flows. Using our calculus, we prove a parametric inductive safety constraint for speed supervision in a train control system.


dynamic logic sequent calculus verification of parametric hybrid systems quantifier elimination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)CrossRefGoogle Scholar
  2. 2.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 266–280. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bemporad, A., Bicchi, A., Buttazzo, G.: Hybrid Systems: Computation and Control. In: HSCC 2007. 10th International Conference, Pisa, Italy. LNCS, vol. 4416, Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Boulton, R.J., Hardy, R., Martin, U.: A Hoare logic for single-input single-output continuous-time control systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 113–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic agents. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Davoren, J.M.: On hybrid systems and the modal μ-calculus. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) Hybrid Systems V. LNCS, vol. 1567, pp. 38–69. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proceedings of the IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  12. 12.
    Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the European Train Control System. In: FMCAD, pp. 76–77. IEEE Computer Society, Washington (2006)Google Scholar
  13. 13.
    Fränzle, M.: Analysis of hybrid systems. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Washington (1996)Google Scholar
  17. 17.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. In: LICS, pp. 394–406. IEEE Computer Society, Washington (1992)Google Scholar
  18. 18.
    Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers, A.: Deduction in the verification support environment (VSE). In: Gaudel, M.-C., Woodcock, J.C.P. (eds.) FME 1996. LNCS, vol. 1051, Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking I. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Platzer, A.: Differential logic for reasoning about hybrid systems. In: Bemporad et al. [5] p. 746–749Google Scholar
  22. 22.
    Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. Logical Foundations of Computer Science, International Symposium, New York, USA. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007)Google Scholar
  23. 23.
    Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. In: Blackburn, P., Bolander, T., Braüner, T., de Paiva, V., Villadsen, J. (eds.), Proc. LICS International Workshop on Hybrid Logic, 2006, Seattle, ENTCS (2007)Google Scholar
  24. 24.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [5] p. 473–486Google Scholar
  25. 25.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1), 937–973 (2003)zbMATHCrossRefGoogle Scholar
  26. 26.
    Rounds, W.C.: A spatial logic for the hybrid π-calculus. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 508–522. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • André Platzer
    • 1
  1. 1.University of Oldenburg, Department of Computing Science, Germany, Carnegie Mellon University, Computer Science Department, Pittsburgh, PA 

Personalised recommendations