Comparison of the Expressiveness of Arc, Place and Transition Time Petri Nets

  • M. Boyer
  • O. H. Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4546)

Abstract

In this paper, we consider bounded Time Petri Nets where time intervals (strict and large) are associated with places (P-TPN), arcs (A-TPN) or transitions (T-TPN). We give the formal strong and weak semantics of these models in terms of Timed Transition Systems. We compare the expressiveness of the six models w.r.t. (weak) timed bisimilarity (behavioral semantics). The main results of the paper are : (i) with strong semantics, A-TPN is strictly more expressive than P-TPN and T-TPN; (ii) with strong semantics P-TPN and T-TPN are incomparable ; (iii)T-TPN with strong semantics and T-TPN with weak semantics are incomparable. Moreover, we give a classification by a set of 9 relations explained in Fig. 14 (p. 80).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Nylén, A.: Timed petri nets and BQOs. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Aura, T., Lilius, J.: A causal semantics for time petri nets. Theoretical Computer Science 243(2), 409–447 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Berthomieu, B.: La méthode des classes d’états pour l’analyse des réseaux temporels. mise en œuvre, extension à la multi-sensibilisation. In: Modélisation des Systémes Réactifs (MSR’01), Toulouse (Fr), pp. 275–290, (17–19 Octobre 2001)Google Scholar
  5. 5.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time petri nets. IEEE transactions on software engineering 17(3), 259–273 (March 1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Boyer, M., Vernadat, F.: Language and bisimulation relations between subclasses of timed petri nets with strong timing semantic. Technical report, LAAS (2000)Google Scholar
  7. 7.
    Boyer, M.: Translation from timed Petri nets with interval on transitions to interval on places (with urgency). In: Workshop on Theory and Practice of Timed Systems, vol. 65 of ENTCS, Grenoble, France, April 2002. Elsevier Science (2002)Google Scholar
  8. 8.
    Boyer, M., Diaz, M.: Multiple enabledness of transitions in time Petri nets. In: Proc. of the 9th IEEE International Workshop on Petri Nets and Performance Models, Aachen, Germany, September 11–14, 2001, IEEE Computer Society, Washington (2001)Google Scholar
  9. 9.
    Boyer, M., Roux, O. H.: Comparison of the expressiveness w.r.t. timed bisimilarity of k-bounded arc, place and transition time Petri nets with weak and strong single server semantics. Technical Report RI, -15, IRCCyN (2006) http://www.irccyn.ec-nantes.fr/hebergement/Publications/2006/3437.pdf
  10. 10.
    Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: When are timed automata weakly timed bisimilar to time Petri nets? In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cassez, F., Roux, O.H.: Structural translation from Time Petri Nets to Timed Automata – Model-Checking Time Petri Nets via Timed Automata. The journal of Systems and Software 79(10), 1456–1468 (2006)CrossRefGoogle Scholar
  12. 12.
    Cerone, A., Maggiolo-Schettini, A.: Timed based expressivity of time petri nets for system specification. Theoretical Computer Science 216, 1–53 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    de Frutos Escrig, D., Ruiz, V.V., Alonso, O.M.: Decidability of properties of timed-arc Petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 187–206. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Hanisch, H.M.: Analysis of place/transition nets with timed-arcs and its application to batch process control. In: Ajmone Marsan, M. (ed.) Application and Theory of Petri Nets 1993. LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri nets. Theoretical Computer Science 4, 277–299 (1977)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Khansa, W., Denat, J.-P., Collart-Dutilleul, S.: P-time Petri nets for manufacturing systems. In: International Workshop on Discrete Event Systems, WODES’96, Edinburgh (U.K.), pp. 94–102 (August 1996)Google Scholar
  17. 17.
    Khanza, W.: Réseau de Petri P-Temporels. Contribution á l’étude des systémes á événements discrets. PhD thesis, Université de Savoie (1992)Google Scholar
  18. 18.
    Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis, Dep. of Information and Computer Science, University of California, Irvine, CA (1974)Google Scholar
  19. 19.
    Pezzè, M.: Time Petri Nets: A Primer Introduction. Tutorial presented at the Multi-Workshop on Formal Methods in Performance Evaluation and Applications, Zaragoza, Spain (September 1999)Google Scholar
  20. 20.
    Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, Project MAC Report MAC-TR-120 (1974)Google Scholar
  21. 21.
    Sifakis, J.: Performance Evaluation of Systems using Nets. In: Brauer, W. (ed.) Net Theory and Applications: Proc. of the advanced course on general net theory, processes and systems, LNCS, vol. 84, Springer, Heidelberg (1980)Google Scholar
  22. 22.
    Srba, J.: Timed-arc Petri nets vs. networks of timed automata. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 385–402. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Walter, B.: Timed net for modeling and analysing protocols with time. In: Proceedings of the IFIP Conference on Protocol Specification Testing and Verification, North Holland (1983)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • M. Boyer
    • 1
  • O. H. Roux
    • 2
  1. 1.IRIT Toulouse France, IRIT/ENSEEIHT, 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7 
  2. 2.IRCCyN, Nantes, France, 1 rue de la Noë 44321 Nantes Cedex 3France

Personalised recommendations