History-Dependent Petri Nets

  • Kees van Hee
  • Alexander Serebrenik
  • Natalia Sidorova
  • Wil van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4546)

Abstract

Most information systems that are driven by process models (e.g., workflow management systems) record events in event logs, also known as transaction logs or audit trails. We consider processes that not only keep track of their history in a log, but also make decisions based on this log. To model such processes we extend the basic Petri net framework with the notion of history and add guards to transitions evaluated on the process history. We show that some classes of history-dependent nets can be automatically converted to classical Petri nets for analysis purposes. These classes are characterized by the form of the guards (e.g., LTL guards) and sometimes the additional requirement that the underlying classical Petri net is either bounded or has finite synchronization distances.

Keywords

Label Expression Global History Counting Formula Token History Transition Guard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Science 323(1-3), 129–189 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Best, E., Devillers, R.R.: Sequential and concurrent behaviour in Petri net theory. Theoretical Computer Science 55(1), 87–136 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Genrich, H.J., Lautenbach, K., Thiagarajan, P.S.: Elements of general net theory. In: Proceedings of the Advanced Course on General Net Theory of Processes and Systems, London, pp. 21–163. Springer, Heidelberg (1980)Google Scholar
  5. 5.
    Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on running programs. In: ASE, IEEE Computer Society (Full version available as a technical report) pp. 412–416 (2001)Google Scholar
  6. 6.
    Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61, 199–224 (1988)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Goltz, U., Reisig, W.: Weighted Synchronic Distances. In: Girault, C., Reisig, W. (eds.) Selected Papers from the First and the Second European Workshop on Application and Theory of Petri Nets. Informatik-Fachberichte, vol. 52, pp. 289–300. Springer, Heidelberg (1981)Google Scholar
  8. 8.
    Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Information and Control 57(2/3), 125–147 (1983)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: LogLogics: A logic for history-dependent business processes, vol. 65(1) (2007)Google Scholar
  10. 10.
    Hopcroft, J., Ullman, J.: Introduction to Automata, Theory, Languages, and Computation. Addison-Wesley, London (1979)MATHGoogle Scholar
  11. 11.
    Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. In: Monographs in Theoretical Computer Science, Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Montanari, U., Pistore, M.: History-dependent automata: An introduction. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Petri, C.A.: Interpretations of net theory. Technical Report ISF-Report 75.07 (1975)Google Scholar
  14. 14.
    Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In: Parikh, R. (ed.) Logics of Programs. LNCS, vol. 193, pp. 269–283. Springer, Heidelberg (1985)Google Scholar
  15. 15.
    Silva, M., Murata, T.: B-fairness and structural b-fairness in Petri net models of concurrent systems. J. Comput. Syst. Sci. 44(3), 447–477 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Suzuki, I., Kasami, T.: Three measures for synchronic dependence in Petri nets. Acta Inf. 19, 325–338 (1983)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Valk, R.: On the computational power of extended Petri nets. In: Winkowski, J. (ed.) Mathematical Foundations of Computer Science 1978. LNCS, vol. 64, pp. 526–535. Springer, Heidelberg (1978)Google Scholar
  18. 18.
    Wimmel, H., Priese, L.: Algebraic characterization of Petri net pomset semantics. In: Mazurkiewicz, A.W, Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 406–420. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Advances in Petri Nets. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Kees van Hee
    • 1
  • Alexander Serebrenik
    • 1
  • Natalia Sidorova
    • 1
  • Wil van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB EindhovenThe Netherlands

Personalised recommendations