Advertisement

Web Customer Modeling for Automated Session Prioritization on High Traffic Sites

  • Nicolas Poggi
  • Toni Moreno
  • Josep Lluis Berral
  • Ricard Gavaldà
  • Jordi Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4511)

Abstract

In the Web environment, user identification is becoming a major challenge for admission control systems on high traffic sites. When a web server is overloaded there is a significant loss of throughput when we compare finished sessions and the number of responses per second; longer sessions are usually the ones ending in sales but also the most sensitive to load failures. Session-based admission control systems maintain a high QoS for a limited number of sessions, but does not maximize revenue as it treats all non-logged sessions the same. We present a novel method for learning to assign priorities to sessions according to the revenue that will generate. For this, we use traditional machine learning techniques and Markov-chain models. We are able to train a system to estimate the probability of the user’s purchasing intentions according to its early navigation clicks and other static information. The predictions can be used by admission control systems to prioritize sessions or deny them if no resources are available, thus improving sales throughput per unit of time for a given infrastructure. We test our approach on access logs obtained from a high-traffic online travel agency, with promising results.

Keywords

Web prediction navigation patterns machine learning data mining admission control resource management autonomic computing e-commerce 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poggi, N., Moreno, T., Berral, J., Gavalda, R., Torres, J.: Web customer modeling for automated session prioritization on high traffic sites. Technical Report, UPC, Group site at http://research.ac.upc.edu/eDragon (2006)
  2. 2.
    Guitart, J., Beltran, V., Carrera, D., Torres, J., Ayguadé, E.: Characterizing secure dynamic web applications scalability. In: 19th International Parallel and Distributed Processing Symposium, pp. 166–176. Denver, Colorado, USA (2005)Google Scholar
  3. 3.
    Guitart, J., Carrera, D., Beltran, V., Torres, J., Ayguadé, E.: Session-Based Adaptive Overload Control for Secure Dynamic Web Applications. In: 34th International Conference on Parallel Processing (ICPP 2005)., pp. 341–349. Oslo, Norway (2005)CrossRefGoogle Scholar
  4. 4.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005), http://www.cs.waikato.ac.nz/~ml/weka zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Nicolas Poggi
    • 1
  • Toni Moreno
    • 2
    • 3
  • Josep Lluis Berral
    • 1
  • Ricard Gavaldà
    • 4
  • Jordi Torres
    • 1
    • 2
  1. 1.Computer Architecture Department, U. Politècnica de Catalunya, BarcelonaSpain
  2. 2.Barcelona Supercomputing Center, BarcelonaSpain
  3. 3.Department of Management, U. Politècnica de Catalunya, BarcelonaSpain
  4. 4.Department of Software, U. Politècnica de Catalunya, BarcelonaSpain

Personalised recommendations