Wavelet Network for Nonlinearities Reduction in Multicarrier Systems

  • Nibaldo Rodriguez
  • Claudio Cubillos
  • Orlando Duran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4528)

Abstract

In this paper, we propose a wavelet neural network suitable for reducing nonlinear distortion introduced by a traveling wave tube amplifier (TWTA) over multicarrier systems. Parameters of the proposed network are identified using an hybrid training algorithm, which adapts the linear output parameters using the least square algorithm and the nonlinear parameters of the hidden nodes are trained using the gradient descent algorithm. Computer simulation results confirm that the proposed wavelet network achieves a bit error rate performance very close to the ideal case of linear amplification.

Keywords

Wavelet network linearizing multicarrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saleh, A.M.: Frecuency-Independent and Frecuency-Dependent nolinear models TWT amplifiers. IEEE Trans. Comm. 29, 1715–1719 (1981)CrossRefGoogle Scholar
  2. 2.
    Watkins, B.E., North, R.: Predistortion of nonlinear amplifier using neural networks. In: Proc. IEEE Military Comm. Conf., vol. 1, pp. 316–320 (1996)Google Scholar
  3. 3.
    Ibnkahla, M., Sombrin, J., Castanié, J.F., Bershad, N.J.: Neural network for modeling non-linear memoryless communications channels. IEEE Trans. Comm. 45(5), 768–771 (1997)MATHCrossRefGoogle Scholar
  4. 4.
    Ibnkahla, M.: Neural network modelling predistortion technique for digital satellite communications. In: Proc. IEEE ICASSP, vol. 6, pp. 3506–3509 (2000)Google Scholar
  5. 5.
    Ibnkahla, M.: Natural gradient learning neural networks for adaptive inversion of Hammerstein systems. IEEE Signal Processing Letters, 315-317 (October 2002)Google Scholar
  6. 6.
    Abdulkader, H., Langket, F., Roviras, D., Castanie, F.: Natural gradient algorithm for neural networks applied to non-linear high power amplifiers. Int. Journal of Adaptive Control and Signal Processing 16, 557–576 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Li, Y., Yang, P.-H.: Data predistortion with adaptive fuzzy systems. IEEE Int. Conf. Syst., Man, and Cybern. 6, 168–172 (1999)Google Scholar
  8. 8.
    Deng, H.-M., He, S.-B., Yu, J.-B.: An adaptive predistorter using modified neural networks combined with a fuzzy controller for nonlinear power amplifiers. Int. Journal of RF and Microwave Computer-Aided Engineering 14(1), 15–20 (2003)CrossRefGoogle Scholar
  9. 9.
    Lee, K.C., Gardner, P.: A Novel Digital Predistorter Technique Using an Adaptive Neuro-Fuzzy Inference System. IEEE Comm. Letters 7(2), 55–57 (2003)CrossRefGoogle Scholar
  10. 10.
    Lee, K.C., Gardner, P.: Adaptive neuro-fuzzy inference system (ANFIS) digital predistorter for RF power amplifier linearization. IEEE Trans. on Veh. Tech. 55(1), 43–51 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhang, Q., Benvenist, A.: Wavelet network. IEEE Trans. Signal Processing 13(6), 889–898 (1992)Google Scholar
  12. 12.
    Zhang, Q.: Using wavelet network in non-parameters estimation. EEE Trans. Neural Networks 8(2), 227–236 (1997)CrossRefGoogle Scholar
  13. 13.
    Serre, D.: Matrices: Theory and applications. Springer, New York (2002)MATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Nibaldo Rodriguez
    • 1
  • Claudio Cubillos
    • 1
  • Orlando Duran
    • 1
  1. 1.Pontifical Catholic University of Valparaiso, Av. Brasil 2241Chile

Personalised recommendations