Towards a Semi-automatic Situation Diagnosis System in Surveillance Tasks

  • José Mira
  • Rafael Martínez
  • Mariano Rincón
  • Margarita Bachiller
  • Antonio Fernández-Caballero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4528)

Abstract

This paper describes an ongoing project that develops a set of generic components to help humans (semi-automatic system) in surveillance and security tasks in several scenarios. These components are based in the computational model of a set of selective and Active VISual Attention mechanisms with learning capacity (AVISA) and in the superposition of an “intelligence” layer that incorporates the knowledge of human experts in security tasks. The project described integrates the responses of these alert mechanisms in the synthesis of the three basic subtasks present in any surveillance and security activity: real-time monitoring, situation diagnosing, and action planning and control. In order to augment the diversity of environments and situations where AVISA system may be used, as well as its efficiency as support to surveillance tasks, knowledge components derived from situating cameras on mobile platforms are also developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez-Sánchez, J.R., de la Paz, F., Mira, J.: A robotics inspired method of modeling accessible open space to help blind people in the orientation and traveling tasks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 405–415. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bolles, B., Nevatia, R.: A hierarchical video event ontology in OWL. Final Report, ARDA Project (2004)Google Scholar
  3. 3.
    Bremond, F., Maillot, N., Thonnat, M., Vu, V.T.: Ontologies for video events. INRIA, Research Report, 5189 (2004)Google Scholar
  4. 4.
    Collins, R.T., Lipton, A.J., Kanade, T. (eds.): Special Issue on Video Surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8) (2000)Google Scholar
  5. 5.
    Fernández-Caballero, A., López, M.T., Mira, J., Delgado, A.E., López-Valles, J.M., Fernández, M.A.: Modelling the stereovision-correspondence-analysis task by lateral inhibition in accumulative computation problem-solving method. Expert Systems with Applications 34(4) (2007)Google Scholar
  6. 6.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 809–830 (2000)CrossRefGoogle Scholar
  7. 7.
    López, M.T., Fernández, M.A., Fernández-Caballero, A., Mira, J., Delgado, A.E.: Dynamic visual attention model in image sequences. Image and Vision Computing 25(5), 597–613 (2007)CrossRefGoogle Scholar
  8. 8.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Real-time motion detection from ALI model. In: Eleventh International Conference on Computer Aided Systems Theory, EUROCAST’07 (2007)Google Scholar
  9. 9.
    López, M.T., Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Algorithmic lateral inhibition method in dynamic and selective visual attention task: Application to moving objects detection and labelling. Expert Systems with Applications 31(3), 570–594 (2006)CrossRefGoogle Scholar
  10. 10.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)CrossRefGoogle Scholar
  11. 11.
    López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)CrossRefGoogle Scholar
  12. 12.
    Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The algorithmic lateral inhibition method. Expert Systems with Applications 27(2), 169–185 (2004)CrossRefGoogle Scholar
  13. 13.
    Nagel, H.H.: Steps towards a cognitive vision system. AI Magazine 25(2), 31–50 (2004)MathSciNetGoogle Scholar
  14. 14.
    Neumann, B., Weiss, T.: Navigating through logic-based scene models for high-level scene interpretations. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 212–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Regazzoni, C.S., Fabri, G., Breñaza, G. (eds.): Advanced Video-Based Surveillance Systems. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  16. 16.
    Rincón, M., Martínez-Cantos, J.: An annotation tool for video understanding. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 701–708. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Rincón, M., Bachiller, M., Mira, J.: Knowledge modeling for the image understanding task as a design task. Expert Systems with Applications 29(1), 207–217 (2005)CrossRefGoogle Scholar
  18. 18.
    Robertson, N., Reid, I.: A general method for human activity recognition in video. Computer Vision and Image Understanding 104, 232–248 (2006)CrossRefGoogle Scholar
  19. 19.
    Taboada, M., Des, J., Martínez, D., Mira, J.: Aligning reference terminologies and knowledge bases in the health care domain. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 437–446. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • José Mira
    • 1
  • Rafael Martínez
    • 1
  • Mariano Rincón
    • 1
  • Margarita Bachiller
    • 1
  • Antonio Fernández-Caballero
    • 2
  1. 1.E.T.S.I. Informática - Univ. Nacional de Educación a Distancia, MadridSpain
  2. 2.Escuela Politécnica Superior de Albacete & Instituto de Investigación en Informática de Albacete, Universidad Castilla-La Mancha, AlbaceteSpain

Personalised recommendations