A Network of Interneurons Coupled by Electrical Synapses Behaves as a Coincidence Detector

  • Santi Chillemi
  • Michele Barbi
  • Angelo Di Garbo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


Recent experiments show that inhibitory interneurons are coupled by electrical synapses. In this paper the information transmission properties of a network of three interneurons, coupled by electrical synapses alone, are studied by means of numerical simulations. It is shown that the network is capable to transfer the information contained in its presynapstic inputs when they are near synchronous: i.e. the network behaves as a coincidence detector. Thus, it is hypothesized that this property hold in general for networks of larger size. Lastly it is shown that these findings agree with recent experimental data.


Amacrine Cell Excitatory Input Inhibitory Interneuron Electrical Coupling Couple Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisahn, A., McBain, C.J.: Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001)Google Scholar
  2. 2.
    Galarreta, M., Hestrin, S.: Electrical synapses between GABA-releasing interneurons. Nat. Neurosci. 2, 425–433 (2001)CrossRefGoogle Scholar
  3. 3.
    Csicsvari, J., Jamieson, B., Wise, K.D., Buzsaki, G.: Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat. Neuron 37, 311–322 (2003)CrossRefGoogle Scholar
  4. 4.
    Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the cortex connected by electrical synapses. Nature 402, 72–75 (1999)CrossRefGoogle Scholar
  5. 5.
    Gibson, J.R., Beierlein, M., Connors, B.W.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999)CrossRefGoogle Scholar
  6. 6.
    Deans, M.R., Gibson, J.R., Sellitto, C., Connors, B.W., Paul, D.L.: Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001)CrossRefGoogle Scholar
  7. 7.
    Gibson, J.R., Beierlein, M., Connors, B.W.: Functional Properties of Electrical Synapses between Inhibitory Interneurons of Neocortical Layer 4. J. Neurophysiol. 93, 467–480 (2005)CrossRefGoogle Scholar
  8. 8.
    Galarreta, M., Hestrin, S.: Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001)CrossRefGoogle Scholar
  9. 9.
    Veruki, L.M., Hartveit, E.: All (Rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33, 935–946 (2002)CrossRefGoogle Scholar
  10. 10.
    Povysheva, N.V., Gonzalez-Burgos, G., Zaitsev, A.V., Kroner, S., Barrionuevo, G., Lewis, D.A., Krimer, L.S.: Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cerebral Cortex 16, 541–552 (2006)CrossRefGoogle Scholar
  11. 11.
    Di Garbo, A., Barbi, M., Chillemi, S.: Signal processing properties of fast spiking interneurons. BioSystems 86, 27–37 (2002)Google Scholar
  12. 12.
    Long, M.A., Landisman, C.E., Connors, B.W.: Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J. Neurosci. 24, 341–349 (2004)CrossRefGoogle Scholar
  13. 13.
    Leznik, E., Llinas, R.: Role of gap junctions in the synchronized neuronal oscillations in the inferior olive. J. Neurophysiol. 94, 2447–2456 (2005)CrossRefGoogle Scholar
  14. 14.
    Placantonakis, D.G., Bukovsky, A.A., Aicher, S.A., Kiem, H., Welsh, J.P.: Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J. Neurosci. 26, 5008–5016 (2006)CrossRefGoogle Scholar
  15. 15.
    Galarreta, M., Hestrin, S.: Electrical and chemical Synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. PNAS USA 99, 12438–12443 (2002)CrossRefGoogle Scholar
  16. 16.
    Erisir, A., Lau, D., Rudy, B., Leonard, C.S.: Function of specific K  +  channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiology 82, 2476–2489 (1999)Google Scholar
  17. 17.
    Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, K., Segev, I. (eds.) Methods in neural modelling, The MIT Press, Cambridge (1989)Google Scholar
  18. 18.
    Strettoi, E., Raviola, E., Dacheux, R.F.: Synaptic connections of the narrow-field, bistratified rod amacrine cell (All) in the rabbit retina. J. Comp. Neurol. 325, 152–168 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Santi Chillemi
    • 1
  • Michele Barbi
    • 1
  • Angelo Di Garbo
    • 1
  1. 1.Istituto di Biofisica CNR, Sezione di Pisa, Via G. Moruzzi 1, 56124 PisaItaly

Personalised recommendations