Advertisement

Temporal Abstraction of States Through Fuzzy Temporal Constraint Networks

  • M. Campos
  • J. M. Juárez
  • J. Salort
  • J. Palma
  • R. Marín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)

Abstract

Temporal abstraction methods produce high level descriptions of a parameter evolution from collections of temporal data. As the level of abstraction of the data is increased, it becomes easier to use them in a reasoning process based on high-level explicit knowledge. Furthermore, the volume of data to be treated is reduced and, subsequently, the reasoning becomes more efficient. Besides, there exist domains, such as medicine, in which there is some imprecision when describing the temporal location of data, especially when they are based on subjective observations. In this work, we describe how the use of fuzzy temporal constraint networks enables temporal imprecision to be considered in temporal abstraction.

Keywords

Temporal Constraint Abstraction Model Temporal Abstraction Temporal Concept Abductive Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellazi, R., Larizza, C., Riva, A.: Temporal abstraction for interpreting diabetic patients monitoring data. Intelligent Data Analisys 2(1-2), 97–122 (1998)CrossRefGoogle Scholar
  2. 2.
    Campos, M., Cárceles, A., Palma, J., Marín, R.: A general purpose fuzzy temporal information management engine. In: EurAsia-ICT 2002, Advances in information and communication technology, pp. 93–97 (2002)Google Scholar
  3. 3.
    Campos, M., Martínez, A., Palma, J., Marín, R.: Modelo genérico de abstracción temporal de datos. In: Proceedings of the XI Conferencia de la Asociación Española para la inteligencia artificial, CAEPIA05, vol. 2, pp. 51–60 (2005)Google Scholar
  4. 4.
    Felix, P., Barro, S., Marín, R.: Fuzzy constraint networks for signal pattern recognition. Artificial Intelligence (Special issue: Fuzzy set and possibility theory-based methods in artificial intelligence) 148(1-2), 103–140 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Haimowitz, I.J., Kohane, I.S.: Managing temporal worlds for medical trend diagnosis. Artificial Intelligence in Medicine 8, 299–321 (1996)CrossRefGoogle Scholar
  6. 6.
    Marín, R., Mira, J., Patón, R., Barro, S.: A model and a language for the fuzzy representation and handling of time. Fuzzy Sets and Systems 61, 153–165 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Palma, J., Juarez, J.M., Campos, M., Marin, R.: Fuzzy theory approach for temporal model-based diagnosis: An application to medical domains. Artificial Intelligence in Medicine 38(2), 197–218 (2006)CrossRefGoogle Scholar
  8. 8.
    Seyfang, A., Miksch, S., Horn, W., Urschitz, M.S., Popow, C., Poets, C.F.: Using Time-Oriented Data Abstraction Methods to Optimize Oxygen Supply for Neonates. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 217–226. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1-2), 79–133 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • M. Campos
    • 1
  • J. M. Juárez
    • 2
  • J. Salort
    • 2
  • J. Palma
    • 2
  • R. Marín
    • 2
  1. 1.Informatics and Systems Dept. Computer Science faculty. University of Murcia 
  2. 2.Information and Communications Engineering Dept. Computer Science faculty. University of Murcia 

Personalised recommendations