Evolutionary Tool for the Incremental Design of Controllers for Collective Behaviors

  • Pilar Caaman̈o
  • Abraham Prieto
  • Jose Antonio Becerra
  • Richard Duro
  • Francisco Bellas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)

Abstract

In this paper we present a software tool for the automatic design of collective behaviors in animated feature films. The most successful existing commercial solutions used in animation studios require an explicit knowledge by the designer of the AI or other techniques and involve the hand design of many parameters. Our main motivation consists in developing a design tool that permits creating the behaviors of the characters from a high level perspective, using general concepts related to the final desired objectives, and to judge these behaviors from a visual point of view, thus abstracting the designer from the computational techniques in the system core. In this case, a bioinspired approach has been followed consisting in the incremental generation of controllers for simulated agents using evolution. An example of flocking activity is created with the system.

Keywords

Computer Animation Automatic Design Collective Behavior Evolutionary Techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins, R.J., Jefferson, D.: Antfarm: Towards simulated evolution. In: Artificial Life II, pp. 579–601. Addison-Wesley, Reading (1992)Google Scholar
  2. 2.
    Yaeger, L.: Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or PolyWorld: Life in a new context. In: Proc. Workshop on Artificial Life (ALIFE92), vol. 17, pp. 263–298. Addison-Wesley, Reading (1994)Google Scholar
  3. 3.
    Ray, T.S.: An approach to the synthesis of life. In: Artificial Life II, pp. 371–408. Addison-Wesley, Reading (1992)Google Scholar
  4. 4.
    Terzopoulos, D., Tu, X., Grzeszczuk, R.: Artificial fishes with autonomous locomotion, perception, behavior, and learning in a simulated physical world. In: Proc. Artificial Life IV, pp. 17–27. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Sims, K.: Evolving virtual creatures. Comp. Graphics 28, 15–22 (1994)CrossRefGoogle Scholar
  6. 6.
    Cavalcanti, A., Freitas Jr., R.A., Kretly, L.: Nanorobotics Control Design: A Practical Approach Tutorial. Robotics Today 18(4) (2005)Google Scholar
  7. 7.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21, 25–34 (1987)CrossRefGoogle Scholar
  8. 8.
    Tu, X.: Artificial Animals for Computer Animation. LNCS, vol. 1635. Springer, Heidelberg (1999)MATHGoogle Scholar
  9. 9.
    Jones, A.R.: Animating interactions between agents who change their minds. Honours Thesis, Monash University (2003)Google Scholar
  10. 10.
    Wolpert, D., Tume, K.: Optimal payoff functions for members of collectives. Advances in Complex Systems 4(2/3), 265–279 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Becerra, J.A., Bellas, F., Santos, J., Duro, R.J.: Complex Behaviours Through Modulation in Autonomous Robot Control. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 717–724. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Duro, R.J., Santos, J.: Discrete Time Backpropagation for training Synaptic Delay Based Artificial Neural Networks. IEEE Trans. on Artificial Neural Networks 10, 779–789 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pilar Caaman̈o
    • 1
  • Abraham Prieto
    • 1
  • Jose Antonio Becerra
    • 1
  • Richard Duro
    • 1
  • Francisco Bellas
    • 1
  1. 1.Integrated Group for Engineering Research, Universidade da Corun̈a, 15403, FerrolSpain

Personalised recommendations