Advertisement

Sensitivity Analysis for the Job Shop Problem with Uncertain Durations and Flexible Due Dates

  • Inés González-Rodríguez
  • Jorge Puente
  • Camino R. Vela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)

Abstract

We consider the fuzzy job shop problem, a job shop scheduling problem with uncertain task durations and flexible due dates, with different objective functions and a GA as solving method. We propose a method to generate benchmark problems with variable uncertainty and analyse the performance of the objective functions in terms of the objective values and the sensitivity to variations in the uncertainty.

Keywords

Schedule Problem Completion Time Fuzzy Number Triangular Fuzzy Number Agreement Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brucker, P., Knust, S.: Complex Scheduling. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research 147, 231–252 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Słowiński, R., Hapke, M. (eds.): Scheduling Under Fuzziness. Studies in Fuzziness and Soft Computing, vol. 37. Physica-Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  4. 4.
    Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE Transactions of Fuzzy Systems 7, 557–569 (1997)CrossRefGoogle Scholar
  5. 5.
    Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of Operational Research 120, 393–407 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fayad, C., Petrovic, S.: A fuzzy genetic algorithm for real-world job shop scheduling. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 524–533. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Petrovic, S., Song, X.: A new approach to two-machine flow shop problem with uncertain processing times. Optimization and Engineering 7, 329–342 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Celano, G., Costa, A., Fichera, S.: An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, 655–669 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chanas, S., Dubois, D., Zieliński, P.: On the sure criticality of tasks in activity networks with imprecise durations. IEEE Transactions on Systems, Man and Cybernetics–Part B: Cybernetics 32, 393–407 (2002)CrossRefGoogle Scholar
  10. 10.
    González Rodríguez, I., Puente, J., Vela, C.R., Varela, R.: Evaluation methodology of schedules for the fuzzy job-shop problem. IEEE Transactions on Systems, Man and Cybernetics, Part A X, Accepted for publication (2007)Google Scholar
  11. 11.
    Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. In: Dubois, D., Prade, H., Yager, R. (eds.) Readings in Fuzzy Sets for Intelligence Systems, pp. 149–158. Morgan Kaufmann, Amsterdam (1993)Google Scholar
  12. 12.
    Klir, G.J., Smith, R.M.: On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence 32, 5–33 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems 10, 445–450 (2002)CrossRefGoogle Scholar
  14. 14.
    González-Rodríguez, I., Vela, C.R., Puente, J.: Study of objective functions in fuzzy job-shop problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 360–369. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Giffler, B., Thomson, G.L.: Algorithms for solving production scheduling problems. Operations Research 8, 487–503 (1960)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Varela, R., Vela, C.R., Puente, J., Gómez, A.: A knowledge-based evolutionary strategy for scheduling problems with bottlenecks. European Journal of Operational Research 145, 57–71 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Inés González-Rodríguez
    • 1
  • Jorge Puente
    • 2
  • Camino R. Vela
    • 2
  1. 1.Department of Mathematics, Statistics and Computing, University of CantabriaSpain
  2. 2.A.I. Centre and Department of Computer Science, University of OviedoSpain

Personalised recommendations