Theories of how the brain computes can be differentiated in three general conceptions: the algorithmic approach, the neural information processing (neurocomputational) approach and the dynamical systems approach. The discussion of key features of brain organization (i.e. structure with function) demonstrates the self-organizing character of brain processes at the various spatio-temporal scales. It is argued that the features associated with the brain are in support of its description in terms of dynamical systems theory, and of a concept of computation to be developed further within this framework.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heylighen, F., Gershenson, C.: The meaning of self-organization in computing. IEEE Intelligent Systems, 72–86 (2003)Google Scholar
  2. 2.
    Schierwagen, A.: Real neurons and their circuitry: Implications for brain theory. iir-reporte, AdW der DDR, Eberswalde, 17–20 (1989)Google Scholar
  3. 3.
    Schierwagen, A.: Modelle der Neuroinformatik als Mittler zwischen neurobiologischen Fakten und Kognitionstheorien. In: Maaz, J. (ed.) Das sichtbare Denken, pp. 131–152. Rodopi-Verlag, Amsterdam (1993)Google Scholar
  4. 4.
    Senjowski, T.J., Koch, C., Churchland, P.S.: Computational Neuroscience. Science 241, 1299–1306 (1988)CrossRefGoogle Scholar
  5. 5.
    Schierwagen, A.: Growth, structure and dynamics of real neurons: Model studies and experimental results. Biomed. Biochim. Acta 49, 709–722 (1990)Google Scholar
  6. 6.
    Schierwagen, A., Claus, C.: Dendritic morphology and signal delay in superior colliculus neurons. Neurocomputing 38-40, 343–350 (2001)CrossRefGoogle Scholar
  7. 7.
    Schierwagen, A., Van Pelt, J.: Synaptic input processing in complex neurons: A model study. In: Moreno-Diaz jr., R., Quesada-Arencibia, A., Rodriguez, J.-C. (eds.) CAST and Tools for Complexity in Biological, Physical and Engineering Systems - EUROCAST 2003, pp. 221–225. IUCTC, Las Palmas (2003)Google Scholar
  8. 8.
    Van Pelt, J., Schierwagen, A.: Morphological analysis and modeling of neuronal dendrites. Math. Biosciences 188, 147–155 (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Schierwagen, A., Alpár, A., Gärtner, U.: Scaling properties of pyramidal neurons in mice neocortex. Mathematical Biosciences (2006), doi:10.1016/j.mbs.2006.08.019Google Scholar
  10. 10.
    Van Ooyen, A. (ed.): Modeling Neural Development. MIT Press, Cambridge (2003)Google Scholar
  11. 11.
    Segev, I.: Cable and Compartmental Models of Dendritic Trees. In: Bower, J.M., Beeman, D. (eds.) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, pp. 53–81. Telos, Santa Clara (1998)Google Scholar
  12. 12.
    Schierwagen, A., Grantyn, R.: Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J. Hirnforsch. 27, 611–623 (1986)Google Scholar
  13. 13.
    Braitenberg, V., Schüz, A.: Anatomy of the Cortex: Statistics and Geometry. Springer, Berlin (1991)Google Scholar
  14. 14.
    Creutzfeld, O.: Cortex cerebri. Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Springer, Berlin (1983)Google Scholar
  15. 15.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)Google Scholar
  16. 16.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)Google Scholar
  17. 17.
    Sporns, O., Tononi, G., Edelman, G.M.: Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav. Brain Res. 135, 69–74 (2002)CrossRefGoogle Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  19. 19.
    Churchland, P., Grush, R.: Computation and the brain. In: Keil, F., Wilson, R.A. (eds.) The MIT Encyclopedia of Cognitive Sciences, pp. 155–158. MIT Press, Cambridge (1999)Google Scholar
  20. 20.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)CrossRefMATHGoogle Scholar
  21. 21.
    Mira, J., Delgado, A.E.: On how the computational paradigm can help us to model and interpret the neural function. Natural Computing (2006), doi:10.1007/s11047-006-9008-6Google Scholar
  22. 22.
    de Charms, R.C., Zador, A.M.: Neural representation and the cortical code. Ann. l Rev. Neurosci. 23, 613–647 (2000)CrossRefGoogle Scholar
  23. 23.
    Searle, J.R.: Is the brain a digital computer? Proc. Amer. Philos. Assoc. 64, 21–37 (1990)CrossRefGoogle Scholar
  24. 24.
    Grush, R.: The semantic challenge to computational neuroscience. In: Machamer, P.K., Grush, R., McLaughlin, P. (eds.) Theory and method in the neurosciences, pp. 155–172. University of Pittsburgh Press, Pittsburg (2001)Google Scholar
  25. 25.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1943)Google Scholar
  26. 26.
    Euler, T., Denk, W.: Dendritic processing. Curr. Opin. Neurobiol. 11, 415–422 (2001)CrossRefGoogle Scholar
  27. 27.
    Polsky, A., Mel, B.W., Schiller, J.: Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004)CrossRefGoogle Scholar
  28. 28.
    London, M., Hausser, M.: Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)CrossRefGoogle Scholar
  29. 29.
    Maass, W., Zador, A.M.: Synapses as Computational Units. Neural Computation 11, 903–917 (1999)CrossRefGoogle Scholar
  30. 30.
    Zador, A.M.: The basic unit of computation. Nature Neurosci. 3(Suppl.), 1167 (2000)Google Scholar
  31. 31.
    Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey cortex. Proc. R. Soc. London Ser. B 198, 1–59 (1977)CrossRefGoogle Scholar
  32. 32.
    Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)CrossRefGoogle Scholar
  33. 33.
    Szentágothai, J.: The modular architectonic principle of neural centers. Rev. Physiol. Bioche. Pharmacol. 98, 11–61 (1983)CrossRefGoogle Scholar
  34. 34.
    Markram, H.: The Blue Brain Project. Nature Rev. Neurosci. 7, 153–160 (2006)CrossRefGoogle Scholar
  35. 35.
    Maass, W., Markram, H.: Theory of the computational function of microcircuit dynamics. In: Grillner, S., Graybiel, A.M. (eds.) The Interface between Neurons and Global Brain Function, Dahlem Workshop Report 93, pp. 371–390. MIT Press, Cambridge (2006)Google Scholar
  36. 36.
    DeFelipe, J., Alonso-Nanclares, L., Arellano, J.I.: Microstructure of the neocortex: Comparative aspects. J. Neurocytol. 31, 299–316 (2002)CrossRefGoogle Scholar
  37. 37.
    Horton, J.C., Adams, D.L.: The cortical column: a structure without a function. Phil. Trans. R. Soc. B 360, 837–862 (2005)CrossRefGoogle Scholar
  38. 38.
    Siegelmann, H.T., Fishman, S.: Analog computation with dynamical systems. Physica D 120, 214–235 (1998)CrossRefMATHGoogle Scholar
  39. 39.
    Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhauser, Boston (1999)MATHGoogle Scholar
  40. 40.
    Schierwagen, A., Werner, H.: Analog computations with mapped neural fields. In: Trappl, R. (ed.) Cybernetics and Systems ’96, pp. 1084–1089. Austrian Society for Cybernetic Studies, Vienna (1996)Google Scholar
  41. 41.
    Schierwagen, A., Werner, H.: Fast orienting movements to visual targets: Neural field model of dynamic gaze control. In: 6th European Symposium on Artificial Neural Networks - ESANN ’98, pp. 91–98. D-facto publications, Brussels (1998)Google Scholar
  42. 42.
    Wellner, J., Schierwagen, A.: Cellular-Automata-like Simulations of Dynamic Neural Fields. In: Holcombe, M., Paton, R.C. (eds.) Information Processing in Cells and Tissues, pp. 295–304. Plenum, New York (1998)Google Scholar
  43. 43.
    Adamatzky, A.: Computing in Nonlinear Media: Make Waves, Study Collisions. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 1–10. Springer, Heidelberg (2001)Google Scholar
  44. 44.
    Sienko, T., Adamatzky, A., Rambidi, N.G., Conrad, M. (eds.): Molecular Computing. MIT Press, Cambridge (2003)MATHGoogle Scholar
  45. 45.
    Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004)CrossRefGoogle Scholar
  46. 46.
    Buzsaki, G., Geisler, C., Henze, D.A., Wang, X.J.: Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004)CrossRefGoogle Scholar
  47. 47.
    Bassett, D.S., Bullmore, E.: Small-world brain networks. Neuroscientist 12, 512–523 (2006)CrossRefGoogle Scholar
  48. 48.
    Shimizu, H.: Biological autonomy: the self-creation of constraints. Applied Mathematics and Computation 56, 177–201 (1993)CrossRefMATHGoogle Scholar
  49. 49.
    Pasemann, F.: Neuromodules: A dynamical systems approach to brain modelling. In: Herrmann, H.J., Wolf, D.E., Poppel, E. (eds.) Supercomputing in Brain Research: From Tomography to Neural Networks, pp. 331–348. World Scientific, Singapore (1995)Google Scholar
  50. 50.
    Hülse, M., Wischmann, S., Pasemann, F.: The role of non-linearity for evolved multifunctional robot behavior. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 108–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Schierwagen
    • 1
  1. 1.Institute for Computer Science, Intelligent Systems Department, University of Leipzig, LeipzigGermany

Personalised recommendations