Physical Basis of Quantum Computation and Cryptography

  • Manuel Calixto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


The new Quantum Information Theory augurs powerful machines that obey the “entangled” logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. In this article, we highlight and explain these fundamental ingredients that make Quantum Computing potentially powerful.


Quantum Algorithm Quantum Cryptography Classical Computer Quantum Information Theory Quantum Superposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schumacher, B.: Phys. Rev. A51, 2738 (1995); B. Schumacher, B., Nielsen, M.A.: Phys. Rev. A54, 2629 (1996).Google Scholar
  2. 2.
    Calixto, M.: On the hidden subgroup problem and efficient quantum algorithms. In: Alvarez-Estrada, R.F., Dobado, A., Fernández, L.A., Martín-Delgado, M.A., Munoz Sudupe, A. (eds.) Fundamental Physics Workshop in honor to A. Galindo, Aula Documental de Investigación, Madrid (2004)Google Scholar
  3. 3.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  4. 4.
    Shor, P.W.: Algorithms for Quantum Computation: Discrete Log and Factoring. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on the Theory of Computer Science, p. 124. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  5. 5.
    Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)Google Scholar
  6. 6.
    Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 74, 4091 (1995)Google Scholar
  7. 7.
    Doyle, J.M., Friedrich, B.: Rev. Esp. Fis. 13, 15 (1999)Google Scholar
  8. 8.
    Aspect, A., Grangier, P., Roger, G.: Phys. Rev. Lett. 47, 460 (1981)Google Scholar
  9. 9.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)Google Scholar
  10. 10.
    Bell, J.S.: Physics 1, 195 (1964); Rev. Mod. Phys. 38, 447 (1966)Google Scholar
  11. 11.
    Bennet, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)Google Scholar
  12. 12.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Nature 390, 575 (1997)Google Scholar
  13. 13.
    Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)Google Scholar
  14. 14.
    Preskill, J.: Lecture Notes for Physics 229 (1998)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Manuel Calixto
    • 1
  1. 1.Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 56, 30203 CartagenaSpain

Personalised recommendations