An Adaptable Multichannel Architecture for Cortical Stimulation

  • J. M. Ferrández
  • E. Liaño
  • M. P. Bonomini
  • E. Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


An architecture for a cortical stimulator with visual neuroprosthetic purposes is presented. This device uses a 3D penetrating multielectrode array, which will be implanted in V1, offering different signal amplitude sets with the programable current source module. This electrode array has been proved for injecting current (charge) in a safety, secure and precise way during animal acute experimentation. The dynamic characteristic of the stimulator provide the possibility to adapt the current level to the different electrodes and tissue impedances. The architectureis based on a microprocessor circuit with programmable waveforms with a transistor based current injection stage. With the proposed system, a wide stimuli set can be used for obtaining the optimal parameters to use in a visual neuroprosthesis using as input a retinomorphic system. The histological results validate the stimulation and implantation procedures.


Current Source Electrode Array Cortical Stimulation Multielectrode Array Tissue Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woollons, D.J.: To beat or not to beat: the history and development of heart pacemakers. IEEE Engineering Science and Education Journal 4(6), 259–269 (1995)CrossRefGoogle Scholar
  2. 2.
    Loeb, G.: Cochlear prosthetics. Annual Review in Neuroscience 13, 357–371 (1990)CrossRefGoogle Scholar
  3. 3.
    Medtronic: Deep Brain Stimulation,
  4. 4.
    North, R.B., Kidd, D.H., Olin, J.C., Sieracki, J.M.: Spinal cord stimulation electrode design: prospective, randomized, controlled trial comparing percutaneous and laminectomy electrodes-part I: technical outcomes. Neurosurgery 51(2), 381–389 (2002)CrossRefGoogle Scholar
  5. 5.
    Schmidt, E.M., Bak, M.J., et al.: Feasibility of a Visual Prosthesis for the Blind Based on Intracortical Stimulation of the Visual Cortex. Brain 119, 507–522 (1996)CrossRefGoogle Scholar
  6. 6.
    Normann, R., Maynard, E., Guillory, K., Warren, D.: Cortical Implants for the Blind. IEEE Spectrum, 54–59 (May 1996)Google Scholar
  7. 7.
    Campbell, P., Jones, K., Huber, R., Horch, K., Normann, R.: A Silicon-Based, Three-Dimensional Neural Interface:Manufacturing Processes for an Intracortical Electrode Array. IEEE Transactions on Biomedical Engineering 38(8), 758–767 (1991)CrossRefGoogle Scholar
  8. 8.
    Ferrández, J.M., Bonomini, M.P., Fernández, E.: A Multiplexed Current Source Portable Stimulator Architecture for a Visual Cortical Neuroprosthesis. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 310–318. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • J. M. Ferrández
    • 1
    • 2
  • E. Liaño
    • 1
  • M. P. Bonomini
    • 1
  • E. Fernández
    • 1
  1. 1.Instituto de Bioingeniería, Universidad Miguel Hernández, Alicante 
  2. 2.Dpto. Electrónica, Tecnología de Computadoras, Univ. Politécnica de Cartagena, Biomedical Technologies S.L. 

Personalised recommendations