ANF Stochastic Low Rate Stimulation

  • Ernesto A. Martínez–Rams
  • Vicente Garcerán–Hernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


Science has been researching on the physiology of the human hearing, and in the last decades, on the mechanism of the neural stimulus generation towards the nervous system. The objective of this research is to develop an algorithm that generalizes the stochastic spike pattern of the auditory nerve fibers (ANF) formulated by Meddis, which fulfils the Volley principle (principle that better describes the operation of the auditory system). The operating principle of the peripheral auditory system together with the models chosen to stimulate the auditory system and the characteristics of the implemented computational model are herein described. The implementation and analysis of the stochastic spike of a simple ANF and the spatial and spatial–temporal stochastic stimulation models demonstrate the superiority of the latter.


Basilar Membrane InterSpike Interval Stimulus Signal Spatial Code Auditory Nerve Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landy, M.S.: Course of Perception. WEB (2004)Google Scholar
  2. 2.
    Hearing and Balance. WEB (22-3-1996)Google Scholar
  3. 3.
    Fundamentals of Hearing & Speech Science. WEB (2004)Google Scholar
  4. 4.
    Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán Hernández, V.: Implantes Cocleares: Desarrollo y Perspectivas. Revista Mexicana de Ingeniería Biomédica XXVII(1), 45–54 (2006)Google Scholar
  5. 5.
    Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán Hernández, V.: Diseño de banco de filtros para modelar la membrana basilar en una prótesis coclear. In: Conferencia Internacional FIE, Universidad de Oriente, Cuba, 1–6 (2006)Google Scholar
  6. 6.
    Ghitza, O.: Auditory models and human performance in task related to speech coding and speech recognition. IEEE Transaction on Speech and Audio Processing, 115–132 (Jan. 1994)Google Scholar
  7. 7.
    Meyer-Bäse, U., Meyer-Bäse, A., Scheich, H.: An Auditory Neuron Models for Cochlea Implants. Aerosense 97, Orlando. SPIE, 582–593 (1997)Google Scholar
  8. 8.
    Meddis, R.: Simulation of mechanical to neural transduction in the auditory recepter. Journal Acoustic Society of America 79(3), 702–711 (1986)CrossRefGoogle Scholar
  9. 9.
    Hewitt, M.J., Meddis, R.: An evaluation of eight computer models of mammalian inner hair-cell function. Journal Acoustic Society of America, 904–917 (1991)Google Scholar
  10. 10.
    Meyer-Bäse, U.: A Interspike Interval Method to Compute Speech Signal from Neural Firing, 1–12 (2004)Google Scholar
  11. 11.
    Van Immerseel, L.M., Martens, J.P.: Pitch and voiced/unvoice determination with an auditory model. J. Acoust. Soc. Am. 91(6), 3511–3526 (1992)CrossRefGoogle Scholar
  12. 12.
    Martens, J.P., Van Immerseel, L.: An auditory model based on the analysis of envelope patterns. In: Acoustics, Speech, and Signal Processing, ICASSP-90, vol. 1, pp. 401–404 (1990)Google Scholar
  13. 13.
    Lopez-Poveda, E.A., Meddis, R.: A human nonlinear cochlear filterbank. J. Acoust. Soc. Am. 110(6), 3107–3118 (2001)CrossRefGoogle Scholar
  14. 14.
    Schatzer, R., Wilson, B., Wolford, R., Lawson, D.: Speech Processors for Auditory Prostheses. Sixth Quarterly Progress Report. WEB, 1–30 (2003)Google Scholar
  15. 15.
    Meddis, R., O’Mard, L.P., Lopez-Poveda, E.A.: A computational algorithm for computing nonlinear auditory frequency selectivity. Journal Acoustic Society of America 109(6), 2852–2861 (2001)CrossRefGoogle Scholar
  16. 16.
    McEwan, A., Van Schaik, A.: A Silicon Representation of the Meddis Inner Hair Cell Model. In: Proceedings of the ICSC Symposia on Intelligent Systems & Application (2000)Google Scholar
  17. 17.
    Johnson, D.H.: The relationship of post-stimulus time and interval histograms to the timing characteristics of spike trains. Biophysical Journal 22, 413–430 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Ernesto A. Martínez–Rams
    • 1
  • Vicente Garcerán–Hernández
    • 2
  1. 1.Universidad de Oriente, Avenida de la América s/n, Santiago de CubaCuba
  2. 2.Universidad Politécnica de Cartagena, Antiguo Cuartel de Antiguones (Campus de la Muralla), Cartagena 30202, Murcia,España 

Personalised recommendations