Physiological Laws of Sensory Visual System in Relation to Scaling Power Laws in Biological Neural Networks

  • Isabel Gonzalo-Fonrodona
  • Miguel A. Porras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4527)


Measurements of some visual functions (visual fields, acuity and visual inversion) versus intensity of stimulus, including facilitation, carried out by Justo Gonzalo in patients with central syndrome, are seen to follow Stevens’ power law of perception. The characteristics of this syndrome, which reveals aspects of the cerebral dynamics, allow us to conjecture that Stevens’ law is in these cases a manifestation of the universal allometric scaling power law associated with biological neural networks. An extension of this result is pointed out.


Test Object Visual Function Sensorial Cortex Biological Neural Network Primate Visual System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64, 153–181 (1957)CrossRefGoogle Scholar
  2. 2.
    West, G.B., Brown, J.H.: Life’s Universal Scaling Laws. Phys. Today, 36–42 (Sept. 2004)Google Scholar
  3. 3.
    West, G.B., Brown, J.H.: The origin of allometric scalin laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biologica structure and organization. J. Exper. Biol. 208, 1575–1592 (2005)CrossRefGoogle Scholar
  4. 4.
    Anderson, R.B.: The power law as an emergent property. Mem. Cogn. 29, 1061–1068 (2001)Google Scholar
  5. 5.
    Gisiger, T.: Scale invariance in biology: coincidence or footprint of a universal mechanisms? Biol. Rev. 76, 161–209 (2001)CrossRefGoogle Scholar
  6. 6.
    West, G.B., Brown, J.H.: A general model for the origin of allometric scalling laws in biology. Science 276, 122–126 (1997)CrossRefGoogle Scholar
  7. 7.
    Banavar, J.R., Maritan, A., Rinaldo, A.: Size and form in efficient transportation networks. Nature 399, 130–132 (1999)CrossRefGoogle Scholar
  8. 8.
    Gonzalo, J.: Investigaciones sobre la nueva dinámica cerebral. La actividad cerebral en función de las condiciones dinámicas de la excitabilidad nerviosa. Publicaciones del Consejo Superior de Investigaciones Científicas, Inst. S. Ramón y Cajal, Madrid, Vol. I (1945), Vol. II (1950). (Avalable in: Instituto Cajal, CSIC, Madrid)Google Scholar
  9. 9.
    Gonzalo, J.: La cerebración sensorial y el desarrollo en espiral. Cruzamientos, magnificación, morfogénesis. Trab. Inst. Cajal Invest. Biol. 43, 209–260 (1951)Google Scholar
  10. 10.
    Gonzalo, J.: Las funciones cerebrales humanas según nuevos datos y bases fisiológicas: Una introducción a los estudios de Dinámica Cerebral. Trab. Inst. Cajal Invest. Biol. 44, 95–157 (1952)Google Scholar
  11. 11.
    Gonzalo, I., Gonzalo, A.: Functional gradients in cerebral dynamics: The J. Gonzalo theories of the sensorial cortex. In: Moreno-Díaz, R., Mira, J. (eds.) Brain Processes, Theories and Models. An Int. Conf. in honor of W.S. McCulloch 25 years after his death, pp. 78–87. The MIT Press, Cambridge (1996)Google Scholar
  12. 12.
    Gonzalo, I.: Allometry in the J. Gonzalo’s model of the sensorial cortex. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 169–177. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Gonzalo, I.: Spatial Inversion and Facilitation in the J. Gonzalo’s Research of the Sensorial Cortex. Integrative Aspects. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1606, pp. 94–103. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Gonzalo, I., Porras, M.A.: Time-dispersive effects in the J. Gonzalo’s research on cerebral dynamics. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 150–157. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Gonzalo, I., Porras, M.A.: Intersensorial summation as a nonlinear contribution to cerebral excitation. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 94–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Arias, M., Gonzalo, I.: La obra neurocientífica de Justo Gonzalo (1910-1986): El síndrome central y la metamorfopsia invertida. Neurología 19, 429–433 (2004)Google Scholar
  17. 17.
    Gonzalo-Fonrodona, I.: Inverted or tilted perception disorder. Rev. Neurol. 44, 157–165 (2007)Google Scholar
  18. 18.
    Delgado, A.E.: Modelos Neurocibernéticos de Dinámica Cerebral. Ph.D.Thesis. E.T.S. de Ingenieros de Telecomunicación, Univ. Politécnica, Madrid (1978)Google Scholar
  19. 19.
    Mira, J., Delgado, A.E., Moreno-Díaz, R.: The fuzzy paradigm for knowledge representation in cerebral dynamics. Fuzzy Sets and Systems 23, 315–330 (1987)CrossRefGoogle Scholar
  20. 20.
    Mira, J., Manjarrés, A., Ros, S., Delgado, A.E., Álvarez, J.R.: Cooperative Organization of Connectivity Patterns and Receptive Fields in the Visual Pathway: Application to Adaptive Thresholdig. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 15–23. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Rodríguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J.: Perception’s shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999)CrossRefGoogle Scholar
  22. 22.
    Arthurs, O.J., Stephenson, C.M.E., Rice, K., Lupson, V.C., Spiegelhalter, D.J., Boniface, S.J., Bullmore, E.T.: Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. NeuroImage 21, 540–546 (2004)CrossRefGoogle Scholar
  23. 23.
    Nieder, A., Miller, E.K.: Coding of cognitive magnitude. Compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003)CrossRefGoogle Scholar
  24. 24.
    Stevens, C.F.: An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411, 193–195 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Isabel Gonzalo-Fonrodona
    • 1
  • Miguel A. Porras
    • 2
  1. 1.Departamento de Óptica. Facultad de Ciencias Físicas., Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040-MadridSpain
  2. 2.Departamento de Física Aplicada. ETSIM. Universidad Politécnica de Madrid., Rios Rosas 21. 28003-MadridSpain

Personalised recommendations