Advertisement

Mesenchymal Stem Cells: a Modern Approach to Treat Long Bones Defects

  • Hana Krečič Stres
  • M. Krkovič
  • J. Koder
  • E. Maličev
  • D. Marolt
  • M. Drobnic
  • N. Kregar-Velikonja
Part of the IFMBE Proceedings book series (IFMBE, volume 16)

Abstract

Human bone marrow contains a population of bone marrow stromal cells (BMSC) capable of forming several types of mesenchymal tissues, including bone and cartilage. BMSC can be isolated, purified and expanded in cell cultures in order to be subsequently implanted in vivo to facilitate bone healing. Our study was designed to a) develop autologous bone tissue constructs ex vivo – by seeding BMSC derived osteoblasts on calcium-triphosphate scaffolds, b) to apply these constructs in patients with a defect of a long bone, and c) to evaluate the healing process. Twenty patients are planed to be involved in the present clinical trial in which the efficiency of psevdoartrosis treatment by tissue engineered bone grafts will be evaluated. One patient was treated according to the study protocol, and the first results are encouraging.

Keywords

Mesenchymal Stem Cell Bone Defect Osteogenic Differentiation Intramedullary Nail Autologous Bone Marrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. (1999) Multilineage potential of mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  2. 2.
    Flanagan N (2001) Advances in stem cell therapy. Genetic Engineering News 21(9):1,29,61,66Google Scholar
  3. 3.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRefGoogle Scholar
  4. 4.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192CrossRefGoogle Scholar
  5. 5.
    Heller L, Scot LL (2001) Bone and soft tissue reconstruction. In: Bucholz RW, Heckmann JD Fractures in Adults. Lippincot Williams & Wilkins, New YorkGoogle Scholar
  6. 6.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture expanded human MSC in vitro. J Cell Biochem 64:295–312CrossRefGoogle Scholar
  7. 7.
    Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D et al. (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk scaffolds. Biotech Bioeng 88:688698CrossRefGoogle Scholar
  8. 8.
    Martin I, Muraglia A, Campanile G, Cancedda, Quarto R (2006) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endo 138(10):4456–4462Google Scholar
  9. 9.
    Fatkhudinov TK, Gol'dshtein DV, Pulin AA, Shamenkov DA, Rzhaninova AA, Gornostaeva SA, Grigor'yan AS, Kulakov AA (2005) Reparative osteogenesis during transplantation of mesenchymal stem cells. Bull Exp Biol Med 40(1):96–99CrossRefGoogle Scholar
  10. 10.
    Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of Skeletal Regeneration. Clin Orthop Rel Res, S41–55Google Scholar
  11. 11.
    Quarto R, Mastrogiacomo M, Cancedda R, Ketepov SM, Mukhachev V et al. (2001) Repair of long bone defects with the use of autologous bone marrow stromal cells. N Eng J Med 344(5):385–386CrossRefGoogle Scholar
  12. 12.
    Kadiyala S, Jaiswal N, Bruder SP (1997) Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical sized segmental bone defect. Tissue Eng 3(2):173–185CrossRefGoogle Scholar
  13. 13.
    Orozco L, Rodriguez L, Torrico C, Douville J, Hock JM, Armstrong RD et al. (2005) Clinical feasibility study: The use of cultured enriched autologous bone marrow cells to treat refractory atrophic and hypotrophic nonunion fractures at http://scholar.google.com/scholar?hl=en&lr=&q=cache:ss358GFA5X cJ:www.aastrom.com/pdf/Whitepaper_Barcelona051205. pdf+Orozco+clinical+feasibilityGoogle Scholar
  14. 14.
    Hernandez Alfaro (2005) Clinical feasibility study: The use of cultured autologous bone marrow – derived Tissue repair cells (TRC) for maxillary sinus floor au gmentation in edetulous humans at http://www.aastrom.com/corporate/bone.cfm?pagesect=SinusLiftGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hana Krečič Stres
    • 1
  • M. Krkovič
    • 2
  • J. Koder
    • 3
  • E. Maličev
    • 4
  • D. Marolt
    • 2
    • 5
  • M. Drobnic
    • 6
  • N. Kregar-Velikonja
    • 1
  1. 1.Educell d.o.o.LjubljanaSlovenia
  2. 2.Department for TraumatologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
  3. 3.Clinical Institute for RadiologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
  4. 4.Blood Transfusion Centre of SloveniaLjubljanaSlovenia
  5. 5.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA
  6. 6.Department of Orthopaedic SurgeryUniversity Medical CentreLjubljanaSlovenia

Personalised recommendations