Image Based Measurements of Single Cell mtDNA Mutation Load

  • Amin Allalou
  • Frans M. van de Rijke
  • Roos Jahangir Tafrechi
  • Anton K. Raap
  • Carolina Wählby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

Cell cultures as well as cells in tissue always display a certain degree of variability, and measurements based on cell averages will miss important information contained in a heterogeneous population. This paper presents automated methods for image based measurements of mitochondiral DNA (mtDNA) mutations in individual cells. The mitochondria are present in the cell’s cytoplasm, and each cytoplasm has to be delineated. Three different methods for segmentation of cytoplasms are compared and it is shown that automated cytoplasmic delineation can be performed 30 times faster than manual delineation, with an accuracy as high as 87%. The final image based measurements of mitochondrial mutation load are also compared to, and show high agreement with, measurements made using biochemical techniques.

Keywords

single cell analysis cytoplasm segmentation mitochondrial DNA image cytometry 

References

  1. 1.
    Bengtsson, E., Nordin, B., Gombrich, P., Domanik, R.: Mapping the cellular contents of pap smears. Analytical and Quantitative Cytology and Histology 18(1), 49–50 (1996)Google Scholar
  2. 2.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  3. 3.
    Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, D.M.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7(10) (2006)Google Scholar
  4. 4.
    Lantuéjoul, C., Beucher, S.: On the use of geodesic metric in image analysis. Journal of Microscopy 121, 39–49 (1981)Google Scholar
  5. 5.
    Larsson, C., Koch, J., Nygren, A., Janssen, G., Raap, A.K., Landegren, U., Nilsson, M.: In situ genotyping individual DNA molecules by target- primed rolling- circle amplification of padlock probes. Nature Methods 1, 227–232 (2004)CrossRefGoogle Scholar
  6. 6.
    Lindblad, J., Wählby, C., Bengtsson, E., Zaltsman, A.: Image analysis for automatic segmentation of cytoplasms and classification of Rac1 activation. Cytometry 57(1), 22–33 (2004)CrossRefGoogle Scholar
  7. 7.
    de Solorzano, C.O., Malladi, R., Lelievre, S.A., Lockett, S.J.: Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy 201(3), 404–415 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. on System Man and Cybernetics 9(1), 62–69 (1979)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Perlman, Z.E., Slack, M.D., Feng, Y., Mitchison, T.J., Wu, L.F., Altschuler, S.J.: Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004)CrossRefGoogle Scholar
  10. 10.
    Soille, P.: Morphological Image Analysis: Principles and Applications, pp. 170–171. Springer, Heidelberg (1999)MATHGoogle Scholar
  11. 11.
    Udupa, J.K., LeBlanc, V.R., Zhuge, Y., Imielinska, C., Schmidt, H., Currie, L.M., Hirsch, B.E., Woodburn, J.: A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics 30, 75–87 (2006)CrossRefGoogle Scholar
  12. 12.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–597 (1991)CrossRefGoogle Scholar
  13. 13.
    Wählby, C., Lindblad, J., Vondrus, M., Bengtsson, E., Björkesten, L.: Algorithms for cytoplasm segmentation of fluorescence labelled cells. Analytical Cellular Pathology 24, 101–111 (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Amin Allalou
    • 1
  • Frans M. van de Rijke
    • 2
  • Roos Jahangir Tafrechi
    • 2
  • Anton K. Raap
    • 2
  • Carolina Wählby
    • 1
  1. 1.Centre for Image Analysis, Uppsala UniversitySweden
  2. 2.Department of Molecular Cell Biology, Leiden University Medical CenterThe Netherlands

Personalised recommendations