A Framework for Multiclass Reject in ECOC Classification Systems

  • Claudio Marrocco
  • Paolo Simeone
  • Francesco Tortorella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)


ECOC is a diffused and successful technique to implement a multiclass classification system by decomposing the original problem in several two-class problems. In this paper we propose ECOC systems with a reject option carried out through two different schemes. The first one estimates the reliability of the output of the ECOC system and does not require any change in its structure. The second scheme, instead, estimates the reliability of the internal dichotomizers and implies a slight modification in the decoding stage. A final investigation is done on the sequential combination of both methods.


ECOC reject option multiple classifiers systems 


  1. 1.
    Kong, E.B., Dietterich, T.G.: Error-Correcting Output Coding Corrects Bias and Variance. In: International Conference on Machine Learning, pp. 313–321 (1995)Google Scholar
  2. 2.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 9–16 (2000)Google Scholar
  3. 3.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)zbMATHGoogle Scholar
  4. 4.
    Masulli, F., Valentini, G.: An experimental analysis of the dependence among codeword bit errors in ECOC learning machines. Neurocomputing 57, 189–214 (2004)CrossRefGoogle Scholar
  5. 5.
    Pujol, O., Radeva, P., Vitrià, J.: Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. On Pattern Analysis And Machine Intelligence 28(6), 1001–1007 (2006)CrossRefGoogle Scholar
  6. 6.
    Morelos-Zaragoza, R.H.: The Art of Error Correcting Coding. Wiley & Sons, Chichester (2002)Google Scholar
  7. 7.
    Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases (1998),
  8. 8.
    Vezhnevets, A., Vezhnevets, V.: Modest AdaBoost - Teaching AdaBoost to Generalize Better. In: Graphicon-2005, Novosibirsk Akademgorodok, Russia (2005),

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Claudio Marrocco
    • 1
  • Paolo Simeone
    • 1
  • Francesco Tortorella
    • 1
  1. 1.DAEIMI, Università degli Studi di Cassino, Via G. Di Biasio 43, 03043 Cassino (FR)Italia

Personalised recommendations