Variational Segmentation Using Dynamical Models for Rigid Motion

  • Jan Erik Solem
  • Anders Heyden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

This paper deals with the segmentation of multiple moving objects in image sequences. A method for estimating the motion of objects without the use of features is presented. This is used to predict the position and orientation in future frames of the sequence. Experiments on real data show that this estimation can be used to improve segmentation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Journal of Computer Vision (1997)Google Scholar
  4. 4.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)MATHCrossRefGoogle Scholar
  5. 5.
    Xu, C., Prince, J.L.: Snakes, shapes and gradient vector flow. IEEE Trans. on Image Processing 7(3), 359–369 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Solem, J.E., Overgaard, N.C.: A Geometric Formulation of Gradient Descent for Variational Problems with Moving Surfaces. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 419–430. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Charpiat, G., Keriven, R., Pons, J.-P., Faugeras, O.: Designing spatially coherent minimizing flows for variational problems based on active contours. In: International Conference on Computer Vision, ICCV 2005, Beijing, China, pp. 1403–1408. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  10. 10.
    Overgaard, N.C., Solem, J.E.: Separating rigid motion for continuous shape evolution. In: International Conference on Pattern Recognition, Hong Kong (2006)Google Scholar
  11. 11.
    Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: International Conference on Computer Vision, vol. 2, Nice, France, pp. 886–892 (2003)Google Scholar
  12. 12.
    Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman, R. (ed.) Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Berlin (1979)CrossRefGoogle Scholar
  13. 13.
    Yezzi, A., Mennucci, A.: Conformal metrics and true gradient flows for curves. In: International Conference on Computer Vision, ICCV 2005, Beijing, China, pp. 913–919. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  14. 14.
    Chan, T., Zhu, W.: Level set based prior segmentation. Technical Report UCLA CAM Report 03-66, University of California at Los Angeles (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jan Erik Solem
    • 1
  • Anders Heyden
    • 1
  1. 1.Applied Mathematics Group, School of Technology and Society, Malmö UniversitySweden

Personalised recommendations