A Robust Approach for 3D Cars Reconstruction

  • Adrien Auclair
  • Laurent Cohen
  • Nicole Vincent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4522)

Abstract

Computing high quality 3D models from multi-view stereo reconstruction is an active topic as can be seen in a recent review [15]. Most approaches make the strong assumption that the surface is Lambertian. In the case of a car, this hypothesis is not satisfied. Cars contain transparent parts and metallic surfaces that are highly reflective. To face these difficulties, we propose an approach to robustly reconstruct a 3D object in translation. Our contribution is a one-dimensional tracker that uses the vanishing point computed in a first pass. We applied it to video sequences of cars recorded from a static camera. Then, we introduce a local frame for the car and use it for creating a 3D rough model. The final result is sufficient for some applications where it is needed to estimate the size of the vehicle. This model can also be used as an initialization for more precise algorithms.

Keywords

Structure From Motion Feature Tracking Surface Fitting RANSAC 

References

  1. 1.
    Almansa, A., Desolneux, A., Vamech, S.: Vanishing points detection without any a priori information. IEEE T-PAMI 25(4), 502–507 (2003)Google Scholar
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Computational Geometry 19(2-3), 127–153 (2001), citeseer.ist.psu.edu/amenta01power.html MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker (2000)Google Scholar
  4. 4.
    Dey, T., Goswami, S.: Tight cocone: A water-tight surface reconstructor (2003)Google Scholar
  5. 5.
    Esteban, C.H., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling. Comput. Vis. Image Underst. 96(3), 367–392 (2004), doi:10.1016/j.cviu.2004.03.016CrossRefGoogle Scholar
  6. 6.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. CVPR 2, 2402–2409 (2006)Google Scholar
  8. 8.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: 4th ALVEY Vision Conference, pp. 147–151 (1988)Google Scholar
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  10. 10.
    Hartley, R.I., Sturm, P.: Triangulation. Computer Vision and Image Understanding: CVIU 68(2), 146–157 (1997), citeseer.ist.psu.edu/hartley94triangulation.html CrossRefGoogle Scholar
  11. 11.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics 3(3), 228–244 (1997), citeseer.ist.psu.edu/lee97scattered.html CrossRefGoogle Scholar
  12. 12.
    Lourakis, M.I.A., Argyros, A.A.: The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. Technical Report 340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece (Aug. 2004), Available from http://www.ics.forth.gr/~lourakis/sba
  13. 13.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision. Springer, Heidelberg (2004)MATHGoogle Scholar
  14. 14.
    Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vision 59(3), 207–232 (2004)CrossRefGoogle Scholar
  15. 15.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR, vol. 1, pp. 519–528 (2006)Google Scholar
  16. 16.
    Swaminathan, R., Kang, S.B., Szeliski, R., Criminisi, A., Nayar, S.K.: On the Motion and Appearance of Specularities in Image Sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 508–523. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon University (April 1991)Google Scholar
  18. 18.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Adrien Auclair
    • 1
  • Laurent Cohen
    • 2
  • Nicole Vincent
    • 1
  1. 1.CRIP5-SIP, University Paris-Descartes, 45 rue des Saint-Pères, 75006 ParisFrance
  2. 2.CEREMADE, University Paris-Dauphine, Place du Maréchal De Lattre De Tassigny 75775 PARISFrance

Personalised recommendations