Comparing Goal Modelling Languages: An Experiment

  • Raimundas Matulevičius
  • Patrick Heymans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4542)


Although goal modelling is a recognised research area, only few empirical studies are reported. In this work we present an experiment where the quality of two goal languages – i* and KAOS – is investigated by means of the semiotic quality framework. We believed that a high quality language would contribute to effective and efficient modelling, and result in high quality models. But the experiment showed that model quality much depends on the particular language characteristics with respect to a given context. The experiment indicated weak and strong properties of goal modelling languages. For researchers, the findings point out possible language improvements. For practitioners, they can facilitate decisions about language selection and use.


Requirement Engineering Qualitative Property Semantic Quality Requirement Engineer Software Requirement Specification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Subaie, H.S.F., Maibaum, T.S.E.: Evaluating the Effectiveness of a Goal-oriented Requirements Engineering Method. In: Proc. of the 4th Int. workshop on Comparative Evaluation in Requirements Engineering (CERE’06), pp. 8–19 (2006)Google Scholar
  2. 2.
    Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E., Quer, C.: A Comparative Analysis of i*-based Agent-oriented Modelling Languages. In: Proc. of the Int. workshop on Agent-oriented Software Development Methodology, pp. 43–50 ( 2005)Google Scholar
  3. 3.
    Berio, G., Opdahl, A., Anaya, V., Dassisti, M.: Deliverable DEM1, (last accessed 31.03.2007) (2005),
  4. 4.
    Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Ledeboer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and Measuring Quality in a Software Requirements Specification. In: Proc. of the 1st Int. Software Metrics Symposium, pp. 141–152 (1993)Google Scholar
  5. 5.
    Franch, X.: On the Quantitative Analysis of Agent-oriented Methods. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Hakkarainnen, S., Strašunskas, D., Hella, L., Tuxen, S.: Choosing Appropriate Method Guidelines for Web-ontology Building. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 270–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-oriented Requirements Analysis Methods. In: Proc. of the 10th joint Conf. on Requirements Engineering (RE’02), pp. 13–22 (2002)Google Scholar
  8. 8.
    Karlsson, L., Berander, P., Regnell, B., Wohlin, C.: Requirements Prioritisation: An Experiment on Exhaustive Pair-Wise Comparison versus Planning Game Partitioning. In: Proc. of the Empirical Assessment in Software Engineering, pp. 145–154 (2004)Google Scholar
  9. 9.
    Kavakli, E.: Goal-oriented Requirements Engineering: a Unifying Framework. Requirements Engineering Journal 6(4), 237–251 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analysis and Critique of Current Methods. In: Krogstie, J., Halpin, T., Siau, K. (eds.) Information Modeling Methods and Methodologies, IDEA Group Publishing, pp. 102–124 (2005)Google Scholar
  11. 11.
    Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 617–632. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In: Proc. IFIP 8.1 working Conf. on Organisational Semiotics, pp. 231–249 (2001)Google Scholar
  13. 13.
    Krogstie, J.: Using a Semiotic Framework to Evaluate UML for the Development for Models of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling Language: System Analysis, Design and Development Issues, IDEA Group Publishing, pp. 89–106 (1998)Google Scholar
  14. 14.
    Krogstie, J., Jørgensen, H.D.: Quality of Interactive Models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 251–263. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Proc. of the 5th IEEE Int. Symposium on Requirements Engineering, Toronto, pp. 249–263 (2001)Google Scholar
  16. 16.
    Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering. PhD thesis, Universite Catholique de Louvain (2001)Google Scholar
  17. 17.
    Matulevičius, R.: Process Support for Requirements Engineering: A Requirements Engineering Tool Evaluation Approach. PhD theses. Norwegian University of Science and Technology (2005)Google Scholar
  18. 18.
    Matulevičius, R.: Experimentation with i* and KAOS Comparison of Languages, Tools and Models. Technical report, UoN, (last accessed 31.03.2007) (2006),
  19. 19.
    Matulevičius, R., Heymans, P., Opdahl, A.L.: Comparing GRL and KAOS using the UEML Approach. In: Concalves, R.J., Muller, J.P., Mertins, K., Zelm, M. (eds.) Enterprise Interoperability II. New Challenges and Approaches, pp. 77–88. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Matulevičius, R., Heymans, P., Sindre, G.: Comparing Goal-modelling Tools with the RE-tool Evaluation Approach. Journal of Information Technology and Control, Lithuania, Technologija 35A(3), 276–284 (2006)Google Scholar
  21. 21.
    Moody, D: What Makes a Good Diagram? Improving the Cognitive Effectiveness of Diagrams in IS Development. To be published In: Proc. of the 15th Int. Conf. on Information Systems Development (ISD 2006) (2006)Google Scholar
  22. 22.
    Mylopoulos, J.: Goal-Oriented Requirements Engineering, Part II. In: Proc. of the 14th IEEE Int. Conf. on Requirements Engineering (RE’06), vol. 4 (2006)Google Scholar
  23. 23.
    Piattini, M., Genero, M., Poels, G.: Nelson: Towards a Framework for Conceptual Modelling Quality. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software Conceptual Models, pp. 1–18. Imperial College Press, London (2005)Google Scholar
  24. 24.
    Regev, G.: Goal Driven Requirements Engineering Overview, (last accessed 31.03.2007)
  25. 25.
    Regev, G., Wegmann, A.: Where do Goals Come From: the Underlying Principles of Goal-oriented Requirements Engineering. In: Proc. of the 13th IEEE Int. Conf. on Requirements Engineering (RE’05), pp. 353–362 (2005)Google Scholar
  26. 26.
    Shoval, P., Yampolsky, A., Last, M.: Class Diagrams and Use Cases – Experimental Examination of the Preferred Order of Modeling. In: Proc. of the Int. workshop on Exploring Modeling Methods for System Analysis and Design (EMMSAD’06), pp. 453–472 (2006)Google Scholar
  27. 27.
    Wohlin, C., Runeson, P., Høst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering. Kluwer Academic Publishers, Boston (2002)Google Scholar
  28. 28.
    Yu, E.: Towards Modeling and Reasoning Support for Early-phase Requirements Engineering. In: Proc. of the 3rd IEEE Int. symposium on Requirements Engineering (RE’97), pp. 226–235. IEEE Computer Society Press, Washington, DC (1997)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Raimundas Matulevičius
    • 1
  • Patrick Heymans
    • 1
  1. 1.PReCISE, Computer Science Faculty, University of NamurBelgium

Personalised recommendations