Advertisement

Near-Threshold Auditory Evoked Fields and Potentials are In Line with the Weber-Fechner Law

  • Bernd Lütkenhöner
  • Jan-Stefan Klein
  • Annemarie Seither-Preisler

According to the Weber-Fechner law, the relationship between sound pressure and perceived loudness should be logarithmic. However, psychoacoustic data do not support this law. Instead, it is widely accepted now that intensity and loudness are approximately related by a power law such that a doubling in loudness roughly requires a tenfold increase in intensity (Stevens 1955). The power law is not applicable at low intensities, though: Extrapolation of the function derived for higher intensities leads to a considerable overestimation of the loudness at threshold (see, e.g., the compilation of data in Buus et al. 1998).

Keywords

Sound Pressure Response Amplitude Temporal Integration Wave Versus Brainstem Auditory Evoke Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buus S, Musch H, Florentine M (1998) On loudness at threshold. J Acoust Soc Am 104:399–410.CrossRefPubMedGoogle Scholar
  2. Fletcher H, Munson WA (1933) Loudness, its definition, measurement and calculation. J Acoust Soc Am 5:82–108.CrossRefGoogle Scholar
  3. Klein JS (2006) Auditorisch evozierte Felder im Bereich der Hörschwelle. Dissertation, Medizinische Fakultät der Westfälischen Wilhelms-Universität, Münster.Google Scholar
  4. Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477.CrossRefPubMedGoogle Scholar
  5. Lütkenhöner B, Steinsträter O (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootol 3:191–213.CrossRefPubMedGoogle Scholar
  6. Lütkenhöner B, Krumbholz K, Lammertmann C, Seither-Preisler A, Steinsträter O, Patterson RD (2003) Localization of primary auditory cortex in humans by magnetoencephalography. NeuroImage 18:58–66.CrossRefPubMedGoogle Scholar
  7. Lütkenhōner B, Klein JS (2007) Auditory evoked field at threshold. Hear Res 228:188–200.CrossRefPubMedGoogle Scholar
  8. Moore BC, Glasberg BR (2004) A revised model of loudness perception applied to cochlear hearing loss. Hear Res 188:70–88.CrossRefPubMedGoogle Scholar
  9. Relkin EM, Doucet JR (1997) Is loudness simply proportional to the auditory nerve spike count? J Acoust Soc Am 101:2735–2740.CrossRefPubMedGoogle Scholar
  10. Stevens SS (1955) The measurement of loudness. J Acoust Soc Am 27:815–829.CrossRefGoogle Scholar
  11. Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865.CrossRefPubMedGoogle Scholar
  12. Zwislocki J (1965) Analysis of some auditory characteristics. In: Luce RD, Bush RR, Galanter E (eds) Handbook of mathematical psychology, vol III. Wiley, New York, pp 1–97.Google Scholar

References

  1. Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689CrossRefPubMedGoogle Scholar

References

  1. Greenberg S, Poeppel D, Roberts T (1998) A space-time theory of pitch and timbre based on cortical expansion of the cochlear traveling wave delay. In: Palmer A, Summerfield Q, Rees A, Meddis R (eds) Psychophysical and physiological advances in hearing. Whurr Publishers, London, pp 293–300Google Scholar

References

  1. Lütkenhöner B, Krumbholz K, Seither-Preisler A (2003) Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. Neuroimage 19:935–949CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bernd Lütkenhöner
    • 1
  • Jan-Stefan Klein
    • 1
  • Annemarie Seither-Preisler
    • 1
  1. 1.ENT ClinicMünster University HospitalMünsterGermany

Personalised recommendations