Advertisement

Imaging Temporal Pitch Processing in the Auditory Pathway

  • Roy D. Patterson
  • Alexander Gutschalk
  • Annemarie Seither-Preisler
  • Katrin Krumbholz
Conference paper

Physiological studies of temporal pitch processing suggest that the processing of temporal regularity begins in the brainstem (e.g., Palmer and Winter 1992), which suggests that there is a hierarchy of temporal pitch processing in the auditory pathway as would be expected from computational models of auditory perception (e.g., Patterson et al. 1995; Pressnitzer et al. 2001). This chapter reports a series of brain imaging studies designed to search for evidence of the hierarchy.

Keywords

Auditory Cortex Auditory Pathway Primary Auditory Cortex Planum Temporale Temporal Regularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendor D, Wang Q (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165.CrossRefPubMedGoogle Scholar
  2. Forss N, Mäkelä JP, McEvoy L, Hari R (1993) Temporal integration and oscillatory response of the human auditory cortex revealed by evoked magnetic fields to click trains. Hear Res 68:89–96.CrossRefPubMedGoogle Scholar
  3. Griffiths TD, Büchel C, Frackowiak RSJ, Patterson RD (1998) Analysis of temporal structure in sound by the brain, Nature Neurosci 1:422–427.CrossRefPubMedGoogle Scholar
  4. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nature Neurosci 4:633–637.CrossRefPubMedGoogle Scholar
  5. Guimares A, Melcher J, Talavage T, Baker J, Ledden P, Rosen B, Kiang N, Fullerton B, Weisskoff R (1998) Imaging subcortical activity in humans. Hum Brain Map 6:33–41.CrossRefGoogle Scholar
  6. Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15:207–216.CrossRefPubMedGoogle Scholar
  7. Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2004a) Temporal dynamics of pitch in human auditory cortex. NeuroImage 22:755–766.CrossRefPubMedGoogle Scholar
  8. Gutschalk A, Patterson RD, Uppenkamp S, Scherg M, Rupp A (2004b) Recovery and refractoriness of auditory evoked fields after gaps in click trains. Eur J Neurosci 20:3141–3147.CrossRefPubMedGoogle Scholar
  9. Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2006) The effect of context on the sustained pitch response in human auditory cortex. Cerebral Cortex (in press).Google Scholar
  10. Hall D, Haggard M, Akeroyd M, Palmer A, Summerfield A, Elliott M, Gurney E, Bowtell R (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Map 7:213–223.CrossRefGoogle Scholar
  11. Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, Lütkenhöner B (2003) Neuromagnetic evidence for a pitch processing centre in Heschl’s gyrus. Cerebral Cortex 13:765–772.CrossRefPubMedGoogle Scholar
  12. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701.CrossRefPubMedGoogle Scholar
  13. Näätänen R, Picton TW (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425.CrossRefPubMedGoogle Scholar
  14. Palmer AR, Winter IM (1992) Cochlear nerve and cochlear nucleus responses to the fundamental frequency of voiced speech sounds and harmonic complex tones. In: Cazals Y, Demany L, Horner K (eds) Auditory physiology and perception. Pergamon, Oxford, pp 231–239.Google Scholar
  15. Palmer AR, Bullock DC, Chambers JD (1998) A high-ouput, high-quality sound system for use in auditory fMRI. NeuroImage 7:S359.Google Scholar
  16. Patterson RD, Allerhand M, Giguere C (1995) Time-domain modelling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.CrossRefPubMedGoogle Scholar
  17. Patterson RD, Uppenkamp S, Johnsrude I, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776.CrossRefPubMedGoogle Scholar
  18. Penagos H, Melcher JR, Oxenham AJ (2004) A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 24:6810–6815.CrossRefPubMedGoogle Scholar
  19. Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084.CrossRefPubMedGoogle Scholar
  20. Rupp A, Uppenkamp S, Bailes J, Gutschalk A, Patterson RD (2005) Time constants in temporal pitch extraction: a comparison of psychophysical and neuromagnetic data. In: Pressnitzer D, de Chevigne A, McAdams S, Collet L (eds) Proc. 13th ISH; Auditory signal processing: physiology, psychoacoustics and models. Dourdan, France, pp 119–125.Google Scholar
  21. Seither-Preisler A, Krumbholz K, Patterson RD, Seither A, Lütkenhöner B (2004) Interaction between the neuromagnetic responses to sound energy onset and pitch onset suggests common generators. Eur J Neurosci 19:3073–3080.CrossRefPubMedGoogle Scholar
  22. Seither-Preisler A, Patterson RD, Krumbholz K, Seither S, Lutkenhoner B (2006a) Evidence of pitch processing in the N100m component of the auditory evoked field. Hear Res 213:88–98.CrossRefPubMedGoogle Scholar
  23. Seither-Preisler A, Patterson RD, Krumbholz K, Seither S, Lutkenhoner B (2006b) From noise to pitch: transient and sustained responses of the auditory evoked field. Hear Res (in press).Google Scholar
  24. Uppenkamp S, Bailes J, Patterson RD (2004) How long does a sound have to be to produce a temporal pitch? Proc. 18th International Congress on Acoustics, Kyoto, vol. I, pp 869–870.Google Scholar
  25. Warren JD, Uppenkamp S, Patterson RD, Griffiths TD (2003) Separating pitch chroma and pitch height in the human brain. Proc Natl Acad Sci Vol 100, No 17, pp 10, 038–10, 042.Google Scholar
  26. Yost WA, Patterson RD, Sheft S (1996) A time-domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078.CrossRefPubMedGoogle Scholar

References

  1. Cooke A (2006) A glimpsing model of speech perception in noise. J Acoust Soc Am 119:1562–1573CrossRefPubMedGoogle Scholar
  2. Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15:207–216.CrossRefPubMedGoogle Scholar
  3. Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2004) Temporal dynamics of pitch in human auditory cortex. NeuroImage 22:755–766.CrossRefPubMedGoogle Scholar
  4. Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, Lütkenhöner B (2003) Neuromagnetic evidence for a pitch processing centre in Heschl’s gyrus. Cerebral Cortex 13:765–772.CrossRefPubMedGoogle Scholar
  5. Limbert C, Patterson RD (1982) Tapping to repeated noise. J Acoust Soc Am 71:S38.CrossRefGoogle Scholar
  6. Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand M (1992) Complex sounds and auditory images. In: Cazals Y, Demany L, Horner K (eds) Auditory physiology and perception. Proceedings of the 9th International Symposium on Hearing. Pergamon, Oxford, 429–446.Google Scholar
  7. Seither-Preisler A, Krumbholz K, Patterson RD, Seither A, Lütkenhöner B (2004) Interaction between the neuromagnetic responses to sound energy onset and pitch onset suggests common generators. Eur J Neurosci 19:3073–3080.CrossRefPubMedGoogle Scholar
  8. Wiegrebe L, Patterson RD, Demany L, Carlyon RC (1998) Temporal dynamics of pitch strength in regular interval noises. J Acoust Soc Am 104:2307–2313.CrossRefPubMedGoogle Scholar

References

  1. Hall DA, Barrett DJK, Akeroyd MA, Summerfield AQ (2005) Cortical representations of temporal structure in sound. J Neurophysiol 94:3181–3191CrossRefPubMedGoogle Scholar
  2. Krumbholz K, Patterson RD, Nobbe A, Fastl H (2003) Microsecond temporal resolution in monaural hearing without spectral cues? J Acoust Soc Am 113:2790–2800.CrossRefPubMedGoogle Scholar
  3. Krumbholz K, Bleeck S, Patterson RD, Senokozlieva M, Seither-Preisler A, Lütkenhöner B (2005) The effect of cross-channel synchrony on the perception of temporal regularity. J Acoust Soc Am 118:946–954.CrossRefPubMedGoogle Scholar
  4. Patterson RD (1994) The sound of a sinusoid: time-interval models. J Acoust Soc Am 96:1419–1428.CrossRefGoogle Scholar
  5. Patterson RD, Irino T (1998) Auditory temporal asymmetry and autocorrelation. In: Palmer A, Rees A, Summerfield Q, Meddis R (eds) Psychophysical and physiological advances in hearing. Proceedings of the 11th International Symposium on Hearing, Whurr, London, pp 554–562.Google Scholar
  6. Patterson RD, Allerhand M, Giguère C (1995) Time-domain modelling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.CrossRefPubMedGoogle Scholar
  7. Patterson RD, Anderson TR, Francis K (2006) Binaural auditory images for noise-resistant speech recognition. In: Ainsworth W, Greenberg S (eds) Listening to speech. LEA, pp 257–269.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Roy D. Patterson
    • 1
  • Alexander Gutschalk
    • 2
  • Annemarie Seither-Preisler
    • 3
  • Katrin Krumbholz
    • 4
  1. 1.Centre for the Neural Basis of Hearing, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
  2. 2.Department of NeurologyUniversity of HeidelbergHeidelbergGermany
  3. 3.Experimental AudiologyMünster University Hospital, Münster and CSS Institut für Psychologie, Karl-Franzens-UniversitätGrazGermany
  4. 4.MRC Institute of Hearing ResearchUniversity ParkNottinghamUK

Personalised recommendations