Automatic Detection of Filters in Images with Gaussian Noise Using Independent Component Analysis
Conference paper
Abstract
In this article we present the results of a study carried out using the popular fastica algorithm applied to the detection of filters in natural images in gray-scale, contaminated with gaussian noise. The detection of filters has been accomplished by using the statistical distribution measures kurtosis and skewness.
Keywords
Gaussian Noise Independent Component Analysis Automatic Detection Natural Image Independent Component Analysis
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Hyvärinen, A.: Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. In: Neural Computation, pp. 1739–1768 (1999)Google Scholar
- 2.Hyvärinen, A., Hoyer, P., Oja, E.: Imagen denoising by sparse code shrinkage. In: Intelligent Signal Processing (2001)Google Scholar
- 3.Pajares Martin Sanz, G., De la Cruz García, J.: Visión por computador. Imágenes digitales y aplicaciones. RA-MA Editorial, Madrid (2001)Google Scholar
- 4.Chalupa, L.M., Werner, J.S. (eds.): The Visual Neurosciences. MIT Press, Cambridge (2003)Google Scholar
- 5.Hérault, J., Jutten, C., Ans, B.: Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromimetique en apprentissage non supervise. In: X Colloque GRETSI, pp. 1017–1022 (1985)Google Scholar
- 6.Jutten, C., Herault, J.: Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)CrossRefMATHGoogle Scholar
- 7.Comon, P.: Independent component analysis - a new concept. Signal Processing 36, 287–314 (1994)CrossRefMATHGoogle Scholar
- 8.Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, New York (2001)Google Scholar
- 9.Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
- 10.Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research 37, 3311–3325 (1997)CrossRefGoogle Scholar
- 11.Bell, A., Sejnowski, T.: The independent component of natural scenes are adge filters. Vision Research, 3327–3338 (1997)Google Scholar
- 12.Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation, 1483–1492 (1997)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2007