Automatic Detection of Filters in Images with Gaussian Noise Using Independent Component Analysis

  • Salua Nassabay
  • Ingo R. Keck
  • Carlos G. Puntonet
  • Rubén M. Clemente
  • Elmar W. Lang
Conference paper

DOI: 10.1007/978-3-540-73007-1_83

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)
Cite this paper as:
Nassabay S., Keck I.R., Puntonet C.G., Clemente R.M., Lang E.W. (2007) Automatic Detection of Filters in Images with Gaussian Noise Using Independent Component Analysis. In: Sandoval F., Prieto A., Cabestany J., Graña M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg

Abstract

In this article we present the results of a study carried out using the popular fastica algorithm applied to the detection of filters in natural images in gray-scale, contaminated with gaussian noise. The detection of filters has been accomplished by using the statistical distribution measures kurtosis and skewness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Salua Nassabay
    • 1
  • Ingo R. Keck
    • 1
  • Carlos G. Puntonet
    • 1
  • Rubén M. Clemente
    • 2
  • Elmar W. Lang
    • 3
  1. 1.Department of Architecture and Technology of Computers, University of Granada, 18071 GranadaSpain
  2. 2.Department of Signals and Communication, University of Sevilla, 41004 SevillaSpain
  3. 3.Institute of Biophysics, University of Regensburg, 93040 RegensburgGermany

Personalised recommendations