Particle Swarm Optimisation of Multiple Classifier Systems

  • Martin Macaš
  • Bogdan Gabrys
  • Dymitr Ruta
  • Lenka Lhotská
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

In this paper we present application of various versions of the particle swarm optimization method (PSO) in the process of generation of multiple-classifier systems (MCS). While some of the investigated optimisation problems naturally lend themselves to the type of optimisation for which PSO is most suitable we present some other applications requiring non-standard representation of the particles as well as handling of constraints in the optimisation process. In the most typical optimisation case the continuous version of PSO has been successfully applied for the optimization of a soft-linear combiner. On the other hand, one of the adapted binary versions of PSO has been shown to work well in the case of multi-stage organization of majority voting (MOMV), where the search dimension is high and the local search techniques can often get stuck in local optima. All three presented PSO based methods have been tested and compared to each other and to forward search and stochastic hillclimber for five real-world non-trivial datasets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Macaš
    • 1
  • Bogdan Gabrys
    • 2
  • Dymitr Ruta
    • 3
  • Lenka Lhotská
    • 1
  1. 1.Czech Technical University in Prague, Technická 2, PragueCzech Republic
  2. 2.Bournemouth University, Computational Intelligence Research Group, School of Design, Engineering and Computing, Poole, Dorset, BH12 5BBUnited Kingdom
  3. 3.British Telecom,Adastral Park, Orion Building MLB 1, PP 12, Martlesham Heath, Ipswich IP5 3REUK

Personalised recommendations