Advertisement

Improving Adaptive Boosting with a Relaxed Equation to Update the Sampling Distribution

  • Joaquín Torres-Sospedra
  • Carlos Hernández-Espinosa
  • Mercedes Fernández-Redondo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)

Abstract

Adaptive Boosting (Adaboost) is one of the most known methods to build an ensemble of neural networks. In this paper we briefly analyze and mix two of the most important variants of Adaboost, Averaged Boosting and Conservative Boosting, in order to build a robuster ensemble of neural networks. The mixed method called Averaged Conservative Boosting (ACB) applies the conservative equation used in Conserboost along with the averaged procedure used in Aveboost in order to update the sampling distribution. We have tested the methods with seven databases from the UCI repository. The results show that Averaged Conservative Boosting is the best performing method.

Keywords

Sampling Distribution Single Network Relaxed Equation Multilayer Feedforward Network Wisconsin Breast Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  2. 2.
    Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–849 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kuncheva, L.I., Whitaker, C.J.: Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, p. 81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Oza, N.C.: Boosting with averaged weight vectors. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 15–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joaquín Torres-Sospedra
    • 1
  • Carlos Hernández-Espinosa
    • 1
  • Mercedes Fernández-Redondo
    • 1
  1. 1.Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I, Avda. Sos Baynat s/n, C.P. 12071, CastellonSpain

Personalised recommendations